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Subgraph-based Graph Representation Learning (SGRL) achieve strong
performance on many graph understanding tasks due to its ability to capture
complex graph motifs. However, existing SGRL methods ignore the dynamic
property of real-world graphs, and the time-consuming subgraph extraction
stage limits the scalability of SGRL.

Key Ideas:

1. We decouple the resource-intensive subgraph extraction stage to be
separately conducted on CPUs and GPUs, which enables full GPU
utilization and offers improved efficiency.

2. We design the data structure for maintaining subgraphs on GPU with
iImproved memory complexity and fast batch processing ability.

3. We upgrade the graph storage scheme on CPU to support frequent graph
update and sampling.
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1. Imbalanced workloads and poor parallelism.

large-scale graphs are hard to store on the GPU.

Online graph updates and sampling are not supported.

. Moving the subgraph extraction stage to the GPU is challenging because
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Graph Storage

@D Bucket-based data structure supports streaming graph
updates and neighbor sampling, while existing methods that rely on
temporal CSR, which cannot accommodate streaming updates.
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@ Sampled Neighbor Pool (SNP) is an N Xk (k = 0 (k1)) matrix
stored on GPU, which is the key design to decouple the subgraph
extraction into two parallel stages.
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@ Batch Processing: Thanks to
the SNP, the subsequent stages
can be fully executed on GPU,
maximizing its computational power.
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Achieves comparable prediction accuracy with 3 ~ 26 X faster overall learning time
compared to state-of-the-art walk-based methods like CAW 'l and NeurTWs [,

even as subgraph size increases.

Average device utilization reaches 80% when extracting large subgraphs in batches.
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