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Abstract

Recent years have witnessed the burgeoning of services based on data represented by

graphs, which leads to rapid increase in the amount and complexity of such graph data.

Graph Neural Networks (GNNs) are specialized neural models designed to represent and

process graph data, and is becoming increasingly popular thanks to their impressive

performance on a wide range of graph learning tasks. Most of these models, however, are

known to be difficult to scale up. Our examination suggests that the GNN scalability

bottleneck is usually the iterative message-passing propagation procedure, which is tightly

coupled with the graph structure. Hence, improving the performance of the expensive

graph propagation by graph related techniques becomes the key in scaling up GNNs.

In this report, we explore the scalability issue on different graph variants and GNN designs,

and propose our approaches to scale up GNN to million- or even billion-scale graphs by

simplifying the graph propagation operation.

We first propose SCARA, a scalable GNN with feature-oriented optimization for graph

computation, to address the propagation bottleneck by decoupling it as precomputation.

SCARA efficiently computes graph embedding from the dimension of node features, and

further selects and reuses feature computation results to reduce overhead. Theoretical

analysis indicates that our model achieves sub-linear time complexity with a guaranteed

precision in propagation process as well as GNN training and inference. We conduct

extensive experiments on various datasets to evaluate the efficacy and efficiency of our

model. Performance comparison with baselines shows that SCARA can reach up to

800× graph propagation acceleration than current state-of-the-art methods with fast

convergence and comparable accuracy.

Next, we specifically study the scalability issue of heterophilous GNN, a family of GNNs

that specializes in learning graphs where connected nodes tend to have different labels.

We propose a scalable model, LD2, which simplifies the learning procedure by decoupling
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graph propagation and generating expressive embeddings prior to training. We perform

theoretical analysis to demonstrate that LD2 realizes optimal time complexity in training,

as well as a memory footprint that remains independent of the graph scale. The capability

of our model is evaluated by extensive experiments. Being lightweight in minibatch

training on large-scale heterophilous graphs, it achieves up to 15× speed improvement

and efficient memory utilization, while maintaining comparable or better performance

than the baselines.
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Chapter 1

Introduction

1.1 Motivations and Challenges

Graphs are ubiquitous in modeling entities and their relationships. The marriage of graphs

and deep learning leads to Graph Neural Networks (GNNs), which describe a set of neural

networks that process data represented by graph structures. Recent advances in Graph

Neural Networks (GNNs) has shown the power in a wide range of applications, such as

computer vision [1, 2], natural language processing [3, 4], spatial-temporal prediction

[5, 6], and natural science [7, 8].

Message-passing GNN designs. Compared to deep learning algorithms on Euclidean

data, GNNs utilize neural architectures to perform tasks on graph data of nodes and edges,

modeling both instances and their relationships. One of the most widely adopted GNN

designs is the Graph Convolutional Network (GCN) [3] which learns graph representations

by leveraging information of topological structure through an operation called message

passing, or interchangeably, graph convolution. Specifically, a GCN represents each node

state by a feature vector, successively propagates the state to neighboring nodes, and

updates the neighbor features using a neural network. This interleaved process of graph

propagation and state update can proceed for multiple iterations. In this means, the

information of one node is passed to another based on edge connections.
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Chapter 1. Introduction

Scalability issues of current GNNs. While being able to effectively gather state

information from the graph structure, the family of networks represented by GCN are

known to be resource-demanding, which implies limited scalability when deployed to

large-scale graphs [9, 10]. It is also non-trivial to fit the node features of large graphs into

the memory of hardware accelerators like GPUs. However, it is increasingly demanding to

apply these effective models to modern real-world graph datasets, which typically have

million-scale nodes with various kinds of attributes. Hence, how to adopt the GCN model

efficiently to these very large-scale graphs while benefiting from its performance becomes

a challenging yet important problem in realistic applications.

1.2 Major Contributions

This report highlights our studies towards scaling up GNNs in two aspects. We firstly

enhance the precomputation phase in decoupled GNNs by integrating graph manage-

ment techniques and feature-oriented optimizations. Then, we look into introducing the

decoupled architecture into a specific field of heterophilous graphs.

In the first part, we propose SCARA, a scalable GNN with high scalability on very

large datasets. The model hierarchy combines two algorithms proposed by us, namely

Feature-Push and Feature-Reuse. The Feature-Push algorithm propagates graph

information from the feature vectors with forward push and random walk. The Feature-

Reuse mechanism further utilizes feature-oriented optimizations to improve the efficiency

of feature propagation while maintaining precision. Powered by these two approaches,

SCARA realizes a sub-linear complexity for precomputation running time along with

efficient model training and inference implemented in the mini-batch approach. It also

demonstrates efficient memory usage in processing billion-scale graphs.

Our second work examines the scalability issues for graphs under heterophily and proposes

LD2, a scalable GNN for heterophilous graphs with Low-Dimension embeddings and Long-

Distance aggregation. The model removes the reliance on iterative train-time full-graph

computations by utilizing the decoupled network architecture that learns on precomputed

embeddings. We design a set of feature and topology embeddings by applying multi-hop

discriminative propagation, encoding expressive node representation within a compact size.

An end-to-end precomputation algorithm is proposed for efficient embedding calculation.
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Chapter 1. Introduction

LD2 achieves theoretically optimized training, highlighting time complexity that is only

linear to the number of nodes O(n) and memory overhead independent of the graph scale.

To the best of our knowledge, LD2 is the first model to achieve such optimization in the

context of heterophilous GNNs.

1.3 Outline of the Report

This report is organized as follows:

• Chapter 1 introduces the background and advances of common GNN designs under

the message-passing framework. It points out the current issues in scalability of such

GNN designs, deriving the research question of scaling up GNNs to large graphs

while maintaining or even improving the performance. We also summarize our

contributions under this topic.

• Chapter 2 reviews the architectures of related GNN variants, including existing

approaches in efficient and scalable designs. We develop a comprehensive analysis

on the scalability bottleneck of these models on time and memory complexity.

• Chapter 3 proposes the SCARA model as the scalable decoupled GNN with feature-

oriented optimization. We subsequently derive our methodology in improving the

precomputation with enhanced algorithms. Extensive experiments are conducted to

demonstrate the model efficiency on billion-scale graphs.

• Chapter 4 presents the LD2 model as the scalable decoupled heterophilous GNN

with Low-Dimension embeddings and Long-Distance aggregation. We tackle the

specific scenario of graphs under heterophily and propose the multi-channel scheme

to utilize the decoupling technique. Experimental evaluations show that the model

achieves improved minibatch training performance especially on large graphs.

• Chapter 5 concludes our current progress. We also conduct further discussions and

expectations of future research.
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Chapter 2

Literature Review

2.1 Notations and Vanilla GNNs

2.1.1 Graph Notations

In a graph G = (V,E) with node set V and edge set E, the number of nodes, the number of

edges, and the average degree are denoted by n = |V |, m = |E|, and d = m/n, respectively.

The neighborhood of an ego node u ∈ V is the set N (u) = {v|(u, v) ∈ E}, and its

degree d(u) = |N (u)|. The diagonal degree matrix is D = diag(d(1), d(2), · · · , d(n)). The
graph connectivity is represented by the adjacency matrix A ∈ Rn×n. We adopt the

general normalization scheme [11, 12] with coefficients a, b ∈ [0, 1] and Ā = D−aAD−b.

The normalized version with self-loop edges is also frequently used, which is denoted as

Ã = (I +D)−a(I +A)(I +D)−b, and the corresponding Laplacian matrix is L̃ = I − Ã.

Each node u ∈ V is represented by an F -dimensional attribute vector x(u), which

composes the attribute matrix X ∈ Rn×F .

Following notations are frequently used in graph spectral theory. Consider an undirected

graph whose adjacency matrix Ã is symmetric, the eigendecomposition of the normalized

graph adjacency and Laplacian matrices respectively as Ã = UMU⊤ and L̃ = V NV ⊤,

where M = diag(µ1, · · · , µn), |µ1| ≥ |µ2| ≥ · · · ≥ |µn|, N = diag(ν1, · · · , νn), 0 = ν1 <

ν2 ≤ · · · ≤ νn, and U ,V are the matrices of corresponding eigenvectors.
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Chapter 2. Literature Review

Intuitively, since L̃ = I − Ã, the leading eigenvalues µ1, µ2, · · · of Ã correspond to

the smallest of those ν1, ν2, · · · of L̃. These eigenvalues are known as the low-frequency

spectrum of the graph that correlates to graph connectivity. Specially, ν2 > 0 if and only

if the graph is connected, which is our case. Similarly, small values of µf and large values

of νi represent the high frequency part of the graph. Graph spectrum is a graph invariant

despite the status of node labels.

2.1.2 GNN Taxonomy

Motivated by the increasing neural network structures of deep learning approaches, various

operations have been introduced to GNN designs to build a broad range of neural networks

on a graph. Early studies propose the notion of GNN as the neural network application

in graph domains [13]. These recurrent GNNs compute and propagate node information

through the graph iteratively to learn a convergent state. Gate-based methods of Gate

Recurrent Units and Long Short-Term Memory are employed as propagation optimizations

[14, 15]. The convolution operation is generalized from grid data to graph and composed

the core of convolutional GNNs [3, 16]. The basic idea is to represent a node by aggregating

the feature of itself as well as its neighbors.

A previous line of convolutional GNNs is based on spectral convolution, which is the

operator defined in the domain after graph Fourier transform, and is introduced to build

GNNs including Spectral CNN [17] and ChebNet [18]. In comparison, spacial -based GNNs

apply graph convolution directly according to graph topology and have a wide range of

varieties such as DCNN [16] and GraphSage [19]. The proposal of GCN [3] bridges the gap

between the above two domains of operators. Thanks to the similarity of convolutional

layers, techniques from grid data of attention mechanism and skip connection have been

generalized to further boost the convolutional GNNs [20, 21].

2.1.3 Vanilla GCN Propagation

A GNN recurrently computes the node representation matrix H(l) as current state in the

l-th layer. For the vanilla L-layer GCN [3], the model input feature matrix is H(0) = X

5



Chapter 2. Literature Review

Table 2.1: Precomputation, training, and inference time complexity of common GNN models.

Model Precomp. Time Training Time Inference Time

GCN [3] – O(ILmF + ILnF 2) O(LmF + LnF 2)
Cluster-GCN [22] O(m) O(ILmF + ILnF 2) O(LmF + LnF 2)
GraphSAINT [23] – O(ILPLnF

2) O(LmF + LnF 2)
GAS [24] O(m+ LnF ) O(ILmF + ILnF 2) O(nF )

APPNP [25] O(m) O(ILPmF + ILnF 2) O(LPmF + LnF 2)
PPRGo [26] O(m/δ) O(IKnF + ILnF 2) O(KnF + LnF 2)
SGC [27] O(LPmF ) O(ILnF 2) O(LnF 2)

GBP [11] O(LPF
√

LPm log(LPn)/ϵ) O(ILnF 2) O(LnF 2)

Table 2.2: Precomputation, training, and inference memory complexity of common GNN
models.

Model Precomp. Mem. Training Mem. Inference Mem.

GCN [3] – O(LnF + LF 2) O(LnF + LF 2)
Cluster-GCN [22] O(n) O(LnbF + LF 2) O(LnF + LF 2)
GraphSAINT [23] – O(LPLnbF + LF 2) O(LnF + LF 2)

GAS [24] O(LnF ) O(LdnbF + LF 2) O(LdnbF + LF 2)
APPNP [25] O(m) O(LnbF + LF 2 + nnb) O(LnbF + LF 2 + nnb)
PPRGo [26] O(n/δ) O(LnbF + LF 2 +Knb) O(LnbF + LF 2 +Knb)
SGC [27] O(m) O(LnbF + LF 2) O(LnbF + LF 2)
GBP [11] O(nF ) O(LnbF + LF 2) O(LnbF + LF 2)

in particular, and the (l + 1)-th representation matrix H(l+1) is updated as:

H(l+1) = σ
(
ÃH(l)W (l)

)
, l = 0, 1, · · · , L− 1, (2.1)

where W (l) is the trainable weight matrix of the l-th layer, Ã = Ã(1/2) is the normalized

adjacency matrix, and σ(·) is the activation function such as ReLU or softmax. For

simplicity we assume the feature size F to be constant in all layers.

Summarized in Tables 2.1 and 2.2, we present an analysis on the complexity bounds of

GCN in Eq. (2.1) to explain the restraints of its efficiency in computational time and

memory, respectively. In the tables, training and inference memory indicate the GPU

usage for storing and updating representation and weight matrices, while precomputation

is usually conducted on RAM. The memory complexity indicates the usage of intermediate

variables, and fixed storage such as the graph adjacency matrices are omitted. Training

and inference time complexity represent the forward-passing computational operations on

respective node sets.
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One dominating part of the GNN learning overhead is the training phase, where the

model weights W (l) are iteratively updated for I epochs and is resource-intensive. For the

L-layer GCN model training per epoch, it can be typically divided into two consecutive

procedures of matrix multiplications: Graph propagation computes the product ÃH(l),

which can be regarded as repetitive sparse-dense matrix multiplications, and is bounded

by a complexity of O(LmF ) giving the adjacency matrix Ã with m entries and the

propagation is conducted for L iterations. The overhead for the second procedure feature

transformation by multiplying W (l) is O(LnF 2). In the inference phase, the model

performs a similar forward prediction, hence results in the same time complexity of

O(LmF + LnF 2).

As discovered by previous studies [11, 22], the dominating term is O(LmF ) when the

graph is large, while the latter transformation can be accelerated by GPU computation.

Hence, the full graph propagation becomes the scalability bottleneck with respect of GNN

learning time.

In terms of memory usage, GCN typically requires O(LnF +LF 2) space to store layer-wise

node representations and weight matrices, respectively. For large-scale cases where n≫ F ,

the overhead of dense node representations O(LnF ) becomes the primary term [28].

2.2 Sampling-based GNNs

2.2.1 Layer-wise Sampling Models

The above analysis indicates that the scalability bottleneck of GCN lies in the time com-

plexity of graph propagation as well as the memory overhead of full-graph representation.

There is a large scope of GNNs attempting to address the issue by sampling techniques,

which simplify the propagation by replacing the entire graph with subgraphs in minibatches

[19, 22, 23]. The message-passing scheme conducted in Eq. (2.1) is hence not on the whole

graph, but a sampled subgraph with corresponding adjacency and embedding matrices.

Some studies utilize layer-wise sampling, where node samples are generated differently

in the propagation of each layer. GraphSAGE [19] typically perform random sampling

7
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to generate a smaller neighbor set of each node with equal size, while FastGCN [29] and

LADIES [30] randomly samples nodes in the entire graph.

GAS [24] samples layer-wise neighbors and consumes great memory for historical embed-

ding. It has O(LmF + LnF 2) training overhead, while the optimal inference complexity

is benefited by the cached embedding.

2.2.2 Graph-wise Sampling Models

Another popular direction is graph-wise sampling with hierarchical consideration of the

whole graph structure. Cluster-GCN [22] divides a graph into subgraphs based on the

result of classical graph clustering algorithms. It requires O(m) precomputation time of

finding clustersm, while the training time is bounded by O(LmF + LnF 2).

GraphSAINT [23] proposes various schemes to utilize different levels of information. The

GraphSAINT model with L-step random walk considers O(Lnb) nodes in each training

iteration, hence produces a total complexity of O(L2nF + L2nF 2). Unfortunately, the

sampling approach is not applicable in the full graph inference stage, resulting in its

inference time and memory overhead being the same with GCN.

2.3 Decoupled GNNs

2.3.1 Post-Propagation Decoupled Models

As the graph propagation possesses the major computation overhead when the graph

is scaled-up, a straightforward idea is to simplify this step and prevent it from being

repetitively included in each layer. Such approaches are regarded as propagation decoupling

models [31, 32]. We further classify them into post- and pre-propagation variants based

on the presence stage of propagation relative to feature transformation.

The post-propagation decoupling methods apply propagation only on the last model layer,

enabling efficient and individual computation of the graph propagation matrix, as well as

8
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the fast and simple model training. The iterative graph propagation in the GCN updates

is replaced by multiplying the PPR matrix after the feature transformation layers:

H(l+1) = σ
(
H(l)W (l)

)
, l = 0, 1, · · · , L− 2, (2.2)

H(l+1) = σ
(
ΠH(l)W (l)

)
, l = L− 1, (2.3)

Π ∈ Rn×n is a matrix representing graph propagation, usually in the form Π =
∑LP

l=0 alÃ
l,

where LP denotes the precomputed propagation hops and al is the hop-dependent diffusion

weight.

The feature transformation in this case is Eq. (2.2), which only contains L layers of

consecutive weight multiplication, much similar to a simple Multi-Layer Perceptron (MLP)

and is sometimes simply noted as H(L) = MLP(X). The design is benefit from the

mini-batch scheme in both training and inference stages, hence reducing the demand for

GPU memory.

Eq. (2.3) corresponds to the graph propagation stage in common GNNs. Since it is after

the feature transformation, it is regarded as post-propagation. Compared to Eq. (2.1), it

is decoupled from the iterative calculation of multiple layers, and only conducted once per

training epoch. However, it is worth noting that such post-propagation is only decoupled

from the iterative layer propagation, but still requires computation in the training iteration.

The APPNP model [25] introduces the personalized PageRank (PPR) [33] algorithm

in the propagation stage, where Π̂ =
∑LP

l=0 α(1 − α)lÃl is the PPR matrix of LP hops.

APPNP performs the post-propagation on the PPR matrix by an LP -round Power Iteration

[33], which leads to a computation speed of O(LPmF + LnF 2) per epoch. By adapting

minibatch training, it does not need to load the full feature matrix into GPU memory,

but only the corresponding rows in matrix H and Π, hence is with a reduced complexity

of O(LnbF + LF 2 + nnb), where nb is the batch size.

The PPRGo model [26] further improves the efficiency of precomputing the PPR matrix

Π by the Forward Push algorithm [34, 35] with an error threshold δ and only records the

top-K entries. However, it demands O(n/δ) space to store the dense PPR matrix.

9
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2.3.2 Pre-Propagation Decoupled Models

Another line of research, namely the pre-propagation models, chooses to propagate graph

information in advance and encode it to the attributes matrix X, forming an embedding

matrix P that is utilized as the input feature to the neural network layers. In a nutshell,

we summarize the model updates in the following scheme:

H(0) = P =

LP∑

l=0

alÃ
l ·X, (2.4)

H(l+1) = σ
(
H(l)W (l)

)
, l = 0, 1, · · · , L− 1, (2.5)

where LP denotes the precomputed propagation hops and al is the hop-dependent diffusion

weight.

The line of Eq. (2.4) corresponds to the precomputation section performing the graph

propagation. As the embedding matrix is calculated only once for each graph, it saves the

propagation time in following L-layer model updates of feature transformation of multiple

epochs compared to GCN in Eq. (2.1). The complexity of this stage is completely free

from the training iteration and is solely related to the precomputation techniques applied

in the model.

Eq. (2.5) follows the neural network feature transformation, taking P as input feature.

Compared to Eq. (2.3), it completely removes the need for additional multiplication,

hence both training and inference are reduced to O(LnF 2). The simple GNN provides

scalability in both resource-demanding training and frequently-queried inference, with the

ease to employ techniques such as mini-batch training, parallel computation, and data

augmentation.

In SGC [27], the embedding matrix is given by a fix-hop multiplication of P = ÃLP ·X.

S2GC [36] performs constant summation on the powers of graph adjacency to obtain a

low-frequency embedding P = 1
LP

∑LP

l=0 Ã
l ·X. GDC [37] formulates the generalized form

P =
∑LP

l=0 alÃ
l ·X. It however mostly focuses on the Heat Kernel form where al = e−t · tl

l!
.

Adapting different embedding schemes, these models calculates the propagation by vanilla

matrix calculation, hence all require O(LmF ) precomputation time.

10
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The model GBP [11] employs a PPR-based bidirectional propagation with LP = L and

tunable al and r to optimize the precomputation calculation. Under an approximation

of relative error ϵ, it improves precomputation complexity to O(LF
√
Lm log(Ln)/ϵ) in

the best case. It is notable that since GBP contains a node-based traverse scheme, it is

sensitive to the scale of n in practice. The embedding matrix in GBP is a dense matrix

that requires O(nF ) memory.

AGP [12] proposes further generalization in two aspects. First, it extends graph nor-

malization D−1/2AD−1/2 to arbitrary D−aAD−b with a, b ∈ [0, 1]. Second, it efficiently

computes propagation with general coefficients al. In the paper, it explores the SGC,

APPNP (PPR), and GDC (Heat Kernel) schemes.

2.4 Heterophilous Graphs and GNNs

2.4.1 Graphs Under Heterophily

For multiclass classification task on graph G = (V,E), a node u ∈ V is labeled by

y(u) ∈ {0, 1, · · · , Nc − 1}, where Nc is the number of classes. The term homophily

indicates that connected nodes tend to be similar to each other in terms of classes, while

in heterophily scenarios the majority are different. Note that heterophily is not the same

of heterogeneous, where in the latter case nodes are dissimilar with respect to types but

not labels.

We measure the graph heterophily by node homophily score [38], which is the average

proportion of the neighbors with the same class of each node:

Hn =
1

|V |
∑

u∈V

|{v ∈ N (u) : y(v) = y(u)}|
|N (u)| . (2.6)

Generally, Hn ∈ [0, 1]. A homophily score closer to 0 indicates higher heterophily, and

vice versa.
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Table 2.3: Precomputation, training, and inference time complexity of heterophilous GNN
models.

Model Precomp. Time Training Time Inference Time

GPRGNN [39] O(m) O(ILPmF + ILnF 2) O(LPmF + LnF 2)
GCNJK [40] – O(ILmF + ILnF 2) O(LmF + LnF 2)
MixHop [41] – O(ILPLmF + ILnF 2) O(LPLmF + LnF 2)
LINKX [42] – O(ImF + ILnF 2) O(mF + LnF 2)

Table 2.4: Precomputation, training, and inference memory complexity of heterophilous GNN
models.

Model Precomp. Mem. Training Mem. Inference Mem.

GPRGNN [39] O(m) O(LnF + LF 2 +m) O(LnF + LF 2 +m)
GCNJK [40] – O(LCnF + LCF

2) O(LCnF + LCF
2)

MixHop [41] – O(CLnF + CLF 2) O(CLnF + CLF 2)
LINKX [42] – O(LCnbF + LCF

2 + nF ) O(LCnbF + LCF
2 + nF )

2.4.2 Iterative Heterophilous GNNs

In the context of GNNs under heterophily, most current models belong to the iterative

design, that they alter the vanilla propagation Eq. (2.1) for better performance but do

not change its iterative nature. Similarly, we compare the complexity of representative

heterophilous models in Tables 2.3 and 2.4.

Usually, heterophilous GNNs consider full-graph information, relying upon the complete

graph adjacency matrix to compute inter-node relationships. These high-order calculations

are shown to be effective in retrieving information beyond immediate neighbors, but come

at the price of more complex propagation operations.

H2GCN [43] examines the homophily-dominant property for 2-hop neighbors, and si-

multaneously performs propagation on both 1-hop and 2-hop adjacency matrices Ã and

Ã2. Specifically, the 2-hop matrix Ã2 is the adjacency matrix of the induced subgraph

consisting of only strict 2-hop neighbors N̄2(u) = {v|t ∈ N (u), v ∈ N (t), v /∈ N (u)}. The
two representations are usually aggregated by a jumping knowledge layer.

MixHop [41] concatenates identity, 1-hop, and 2-hop propagations in each of its layer

H(l+1) = σ(H(l)W
(l)
0 ∥ÃH(l)W

(l)
1 ∥Ã2H(l)W

(l)
2 ), where (·∥·) denotes matrix concatena-

tion. Such aggregation results in expanding width of representations over multiple layers.
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GeomGCN [38] incorporates geometric measures besides node connections to build the

overview of the entire graph, while GloGNN [32] considers global information during

message-passing, which is equivalent to a propagation of layer representations of nodes

from different hops.

Another common practice for non-homophilous design is altering transformation to learn

from multiple features, i.e. channels. Denote the number of channels as C, employing

multi-channel learning per layer respectively increases the memory budget for node

representations and weight matrices by C. In Table 2.4 we denote LC = L + C for

simplicity.

GCNJK [40] records individual layer representations as channels, which is widely use

by following works such as H2GCN. MixHop also include a multi-channel design that

aggregating embeddings from different hops.

FAGCN [44] introduces the high-frequency filter ϵI − Ā. In each layer, it respectively

applies low- and high-frequency filters to the layer representation and aggregates by

attention mechanism.

GGCN [45] proposes the process of assigning signs to edges based on inter- and intra-node

similarity. In practice, they utilize cosine similarity between node feature vectors. Its

aggregation is performed on the representations corresponding to the positive edges, the

negative edges, and the raw representation of previous layer, with weights of each channel

controlled by a learnable scalar factor.

ACM [46] explores the channel mixing mechanism, similarly applying multiple channels to

learn the layer representation. For each layer, low-frequency, high-frequency, and identity

channels are respectively applied to the current representation before a learnable node-wise

aggregation: ÃHWl, (I − Ã)HWh, IHWi

In spite of their advantageous capabilities, recent studies discover that heterophilous GNNs

are naturally unsuitable for sampling-based minibatching, since their distant or full-graph

information is heavily overlooked in batches built on locality [47]. Evaluations show that

simply fitting these models to learn from induced subgraph samples causes performance

degradation [42].
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2.4.3 Decoupled Heterophilous GNNs

Applying the decoupling technique to heterophilous GNNs is non-trivial due to the full-

graph relationships. Very few models fall into this classification at the current stage. To

our knowledge, GPRGNN [39] and LINKX [42] are the only models conceptually similar

to this scheme, but both remain sensitive to the graph scale.

GPRGNN performs learnable propagation on the output of feature transformation H(L) =
∑LP

l=0 alÃ
l ·MLP(X). The adjacency matrix is inevitable for deriving weight parameters

al. Therefore, GPRGNN is still regarded as a full-batch model.

LINKX alternatively exploits a simple architecture H(L) = MLP(XWX ⊕AWA), where

⊕ denotes representation fusion. Although it supports minibatching, the matrix A is

involved as an input feature in learning. Hence it still suffers from O(nF ) model size and

O(mF ) forward prediction time.
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Scalable Decoupling Graph Neural

Network with Feature-Oriented

Optimization

3.1 Introduction

The modern years have witnessed the burgeoning of online services based on data repre-

sented by graphs, which leads to rapid increase in the amount and complexity of such

graph data. Graph Neural Networks (GNNs) describe a set of neural networks that

process data represented by graphs, and have achieved strong performance on graph

understanding tasks such as node classification [3, 19, 22, 29], link prediction [20, 48–50],

and community detection [51–53]. Recent studies have attempted to learn representations

of large graphs such as the Microsoft Academic Graph (MAG) with 100 million entries

[54, 55]. Nonetheless, directly fitting the basic models like GCN to such data would easily

cause unacceptable training time or out-of-memory error.

This work is published as: Ningyi Liao∗, Dingheng Mo∗, Siqiang Luo, Xiang Li, Pengcheng Yin.
“SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization”. Proceedings of the
VLDB Endowment, Vol. 15, No. 11, pp. 3240-3248, 2022.
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Several techniques have been proposed towards more efficient learning for GNN, addressing

the scalability issues. One optimization is to decouple graph propagation from feature

learning and employ simple model structures to speed up computation [25, 27], which

frees the GPU memory from storing entire graph data and reduces memory footprint.

Such methods typically integrate graph data management techniques such as Personalized

PageRank [33] to calculate the graph representation used in the model. Another direction

is easing node interdependence, which enables training on smaller batches and is achieved

by neighbor sampling [19, 56], layer sampling [24, 29], and subgraph sampling [22, 23, 57].

Various sampling schemes have been applied to restrain the number of nodes contained in

GNN learning pipelines and reduce computational overhead. Other algorithms are also

utilized in simplifying graph propagation and learning in order to improve efficiency and

efficacy, including diffusion [16, 25], self-attention [20, 58, 59], and quantization [60].

Unfortunately, such methods are nevertheless not efficient enough when applied to million-

scale or even larger graphs. According to [12], the very recent state-of-the-art algorithm

GBP [11] typically consumes more than 104 seconds solely for precomputation on the

Papers100M graph (111M nodes, 1.6B edges, generated from MAG) to reach proper

accuracy. In our experiments, the same model even exceeds the 192GB RAM bound on

a single worker during processing, implying that the cost of such an approach is still

prohibitively high to be applied in practice.

In this research, we propose SCARA, a scalable Graph Neural Network algorithm with

low time complexity and high scalability on very large datasets. On the theoretical side,

the time complexity of SCARA for precomputation/training/inference matches the same

sub-linear level with the state of the art. On the practical side, to our knowledge, SCARA

is the first GNN algorithm that can be applied to billion-scale graph Papers100M with a

precomputation time less than 13 seconds and complete training under a relatively strict

memory limit.

Particularly, SCARA employs several feature-oriented optimizations. First, we observe

that most current scalable methods repetitively compute the graph propagation information

from the node-based dimension, which results in complexity at least proportional to the

number of graph nodes. To address this issue, we design a Feature-Push method

that realizes the information propagation from the feature vectors, which removes the

linear dependency on the number of nodes in the complexity while maintaining the same
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precision of corresponding graph propagation values. Second, as we mainly process the

feature vectors, we discover that there is significant room to reuse the computation results

across different feature dimensions. Hence we propose the Feature-Reuse algorithm.

Through compositing the calculation results, SCARA efficiently adopts several feature-

based vector optimizations and prevents time-consuming repetitive propagation. By such

designs, SCARA outperforms all leading competitors in our experiments in all 6 GNN

learning tasks in regard to model convergence time, i.e., the sum of precomputation and

training time, with highly efficient inference speed, significantly better memory overhead,

and comparable or better accuracy.

3.2 Method

We propose our SCARA framework composing Feature-Push and Feature-Reuse.

The Feature-Push algorithm conducts graph propagation from the aspect of features,

while Feature-Reuse is a novel technique that reuses columns in the feature matrix. We

also present analysis on the algorithmic complexity and precision guarantee to demonstrate

the theoretical validity and effectiveness of SCARA.

3.2.1 SCARA Model Overview

To realize scalability in the network training and inference stage, and to better employ

advanced Personalized PageRank (PPR) algorithms to optimize graph diffusion, we apply

the backbone of propagation decoupling approach in our GNN design. Similar to previous

models [11, 27], in precomputation stage we follow the idea of pre-propagation decoupling

to compute the graph information P in advance together with the node attributes X.

Then, a simple yet effective feature transformation is conducted as given in Eq. (2.5). We

enhance the model structure by incorporating skip connections [25] and dense connections

[11] in every intermediate layers. Thence, it enjoys a O(LnbF + LF 2) memory footprint

and O(LnF 2) time complexity during training and inference.
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Since the propagation stage is the complexity bottleneck as mentioned earlier, we focus

on reducing its computation complexity. We derive Eq. (2.4) in our propagation as:

P =
∞∑

l=0

α(1− α)lÃl
(r) ·X =

∞∑

l=0

α(1− α)l
(
Dr−1AD−r)lX, (3.1)

where α is the teleport probability as we set al = α(1−α)l to be associated with the form in

the PPR calculation, and utilize a symmetric normalization factor a = 1−r, b = r, r ∈ [0, 1].

Our computation of Eq. (3.1) is displayed in Algorithm 3.1 (Feature-Push) and explained

in detail in Section 3.2.2. The highlight of Feature-Push is the application of propagating

from features, which differs from prior works. In many real-world tasks, when a graph

is scaled-up, its numbers of nodes (n) and edges (m) increase, but the node attributes

dimension (F ) usually remains unchanged. Thus, an algorithm with complexity mainly

dependent on F enjoys better scalability than those dominated by n or m.

As the attribute matrix X is included in our computation, we then investigate how to

fully utilize its implicit information to further accelerate our algorithm, which leads to the

Algorithm 3.2 (Feature-Reuse). The motivation is to reduce the expensive iterative

computation of P components by exploiting the previous results based on attribute

vectors x on selected dimensions f . We apply a linear combination scheme with precision

guarantee to lighten the constraints of Algorithm 3.1 while improving speed. We further

describe this methodology in Section 3.2.3.

3.2.2 Feature-Push

Examining Eq. (3.1), the embedding matrix P is the composition of graph diffusion matrix

Ã(r) and node attributes X. Most scalable methods such as APPNP [25] and SGC [27]

compute the propagation part separately from network training, resulting in a complexity

at least proportional to edge size m. GBP [11] discusses a bidirectional propagation with

both node-side random walk on D−1A and feature-side reverse push on D−rX. Although

the random walk step ensures precision guarantee, it requires long running time when not

being accelerated by other methods [61, 62].

We propose the Feature-Push approach that propagates graph information from the

feature dimension, which is capable to utilize efficient single-source PPR algorithms through
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a simple but surprisingly effective transformation. Note that the graph propagation term

in Eq. (3.1) can be written as the following to rearrange the normalization order:

Ãl
(r) ·X =

(
Dr−1AD−r)lX = Dr−1

(
AD−1

)l
D1−rX. (3.2)

Here, given the normalized features D1−rX, single-source PPR algorithms can be al-

ternated to efficiently propagate information with (AD−1)
l
, one feature vector each

time, without doing the actual iterative matrix multiplications. In order to better derive

Feature-Push, we borrow the Personalized PageRank (PPR) notations to describe

our technique manipulating feature vectors. On a graph G, given a source node s ∈ V
and a target node t ∈ V , the PPR π(s, t) represents the probability of a random walk

with teleport factor α ∈ (0, 1) which starts at node s and stops at t. In general, forward

PPR algorithms, often categorized as single-source PPR, start the computation from s,

contrasted to backward or reverse alternatives that are developed from t [12].

When the PPR calculation is integrated with features, it shares similarities in forms but

with a different interpretation. Consider the PPR problem with regard to nodes in a set

U ⊆ V as the source nodes. Let nU be the size of set U . We call an nU -dimension vector

x with sum of elements ∥x∥1 = 1 as a feature vector. In our context, the feature PPR

π(x; t) represents the PPR for feature vector x, and can be defined as the probability of

the event that a random walk which starts at a node s ∈ U with probability distribution

x and stops at t. It can be derived from the definition that, each feature PPR π(x; t) can

be interpreted as a generalized integration of a series of the common single-source PPR

value π(s, t) with the source node s being any arbitrary nodes in U . Hence the properties

and operations of common PPR are still valid.

The notation can be extended to the matrix form when computing multiple features. Let

F be the number of feature vector. The feature matrix is X = [x1, · · · ,xF ] of shape
nU × F and xf (1 ≤ f ≤ F ) is the f -th column feature vector. Correspondingly, the

embedding matrix is P = [π1, · · · ,πF ], where πf = π(xf) is the f -th column of PPR

vector computed from feature xf , and is composed by πf = (π(xf ; t1), · · · , π(xf ; tnU
))⊤

on all nodes. Calculating P from feature X is achieved by separately applying Feature-

Push on each feature vector, which is exactly the implication of Eq. (3.1). Now that the

feature PPR is explained, we here look into its calculation. We define the problem of

feature PPR approximation:
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Definition 3.1 (Approximate Feature PPR). Given an absolute error bound λ > 0,

a PPR threshold 0 < δ < 1, and a failure probability 0 < ϕ < 1, the approximate PPR

query for feature vector x computes an estimation π̂(x; t) for each t ∈ U with π(x; t) > δ,

such that with probability at least 1− ϕ,

|π(x; t)− π̂(x; t)| ≤ λ. (3.3)

Recognizing that GNNs require less precise propagation information to achieve proper

performance [63, 64], the approximate feature PPR enables employing efficient computation

based on forward PPR algorithms without loss in eventual model effectiveness [61, 65]. We

employ a scalable algorithm Feature-Push to compute the embedding matrix combining

Forward Push [35] and Random Walk techniques that both operate feature vectors. The

algorithm makes use of both approaches, that random walk is accurate but less efficient,

while forward push is fast with a loose precision guarantee. Algorithms exploiting such

Algorithm 3.1 Feature-Push

Input: Graph G, node set U , feature vector x, probability α, convolution factor r, push

parameter β

Output: Approximate embedding vector π̂(x)

1 for all u ∈ U do

2 r′(x;u)← x(u) · d(u)1−r
3 r(x;u)← r′(x;u)/

∑
u∈U r

′(x;u)

4 π̂(x; t)← 0 for all t ∈ U
5 while exist u ∈ U such that r(x;u) > rmax/d(u) do

6 for all v ∈ N (u) do

7 r(x; v)← r(x; v) + (1− α) · r(x;u)/d(u)
8 π̂(x;u)← π̂(x;u) + α · r(x;u)
9 r(x;u)← 0

10 rsum ←
∑

u∈U r(x;u), NW ← rsum/β

11 for all u ∈ U such that r(x;u) ̸= 0 do

12 Perform r(x;u)
rsum

·NW random walks from u

13 for all random walk stopping at t do

14 π̂(x; t)← π̂(x; t) + rsum/NW

15 π̂(x; t)← π̂(x; t) · d(t)r−1 for all t ∈ U
16 return π̂(x)← (π̂(x; t1), · · · , π̂(x; tnU

))⊤
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combination have been the state of the arts in various PPR benchmarks [61, 66]. We

highlight that the differences between Algorithm 3.1 and [61, 66] are three-fold. First, the

push starts from the feature vector, which can be seen as a generalized PPR operation

taking probability distribution x into account. Unlike single source PPR that starts from

only one node in the graph, the feature vector x is usually dense and hence requires

specific processing. Second, the feature-based query facilitates subsequent transformation

in Eq. (3.2) and reusing in Eq. (3.8). This design ensures that the computation result

π satisfies the need of GNN propagation. Third, the Feature-Push design minimizes

the need of additional storage and conducts most feature-wise operations in-place, which

demonstrates excellent memory efficiency.

As shown in Algorithm 3.1, the Feature-Push algorithm outputs the approximation

of embedding vector π̂(x) for input feature x. Repeating it for F times with all fea-

tures x1, · · · ,xF produces all columns compositing the estimate of embedding matrix

P̂ . The algorithm first computes the approximation π̂(x; t) for each node t ∈ U through

forward push (line 1-9 in Algorithm 3.1), then conducts compressed random walks to save

computation (line 10-14). We analyze each method and their combination respectively.

Forward Push on Feature Value. Instead of calculating the PPR value π(s, t), the

forward push method in Feature-Push maintains a reserve value π̂(x; t) directly for

node t ∈ U and feature x as the estimation of π(x; t). An auxiliary residue value r(x; t) is

recorded as the intermediate result for each node-feature pair. The residue is initialized by

the L1-normalized feature vector x, to convert node attributes to distributions in line with

π(x; t) that stands for the probability with a sum of 1 for all nodes t ∈ U . The forward

push algorithm subsequently updates the residue of target node t from the source node

s to propagate the information. The threshold rmax controls the terminating condition

so that the process can stop early. Eventually, the forward push transfers α portion of

node residue r(x; t) into reserve value, while distributing the remaining (1 − α) to the

neighbors of s.

Random Walk on Feature Residue. Feature-Push then performs random walks

with decay factor α to propagate the residue feature value. Compared with the pure

random walk approach, Feature-Push only requires r(x;t)
rsum

· NW number of walks per

node with the same precision guarantee, benefiting from the Forward Push results. As

presented in line 10, the total random walk number NW is decided by the ratio rsum/β,
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hence a sparser residue and lager parameter β result in less random walks required. The

estimation of π̂(x; t) is eventually achieved by implementing the Monte-Carlo method

[62, 67], and is updated according to the fraction of random walks terminating at t.

Combination and Normalization. The combination of forward push and random walk

generates the approximate PPR matrix Π(l) = α(1− α)l (AD−1)
l
for a certain l. To be

aligned with the embedding matrix P (l) in Eq. (3.1), we apply the normalization by degree

vector (lines 2 and 15 in Algorithm 3.1) to achieve the transformation in Eq. (3.2). It is

worth noting that Algorithm 3.1 is fully feature-oriented – it processes one feature vector

at a time. Such scheme has several merits, with the first is that a series of vectorization

techniques can be applied during processing each feature to accelerate computation. For

space optimization, the feature vector x and result vector π̂(x) can be computed in-place

and share the same memory, thus greatly reduces the overhead of storing such dense

vector and in the mean time ensures memory locality.

Approximation Precision. To depict the combination between forward push and

random walk processes, we define the push parameter β:

Definition 3.2 (Push Parameter). The push parameter β is the scale between the total

left residual rsum and the total number of sampled random walks NW in Feature-Push.

The parameter β is named after its pivot role in determining the portion of forward push

conducted as shown later in Theorem 3.4. It is the key parameter of Feature-Push,

which balances absolute error guarantee and time complexity. Referencing the trade-off in

[61], we set β to a specific value, namely standard push parameter βs =
λ2

(2λ/3+2)·log(2/ϕ) , to

satisfy the guarantee of π̂(x; t) in Definition 3.1. In Algorithm 3.1, the forward push and

random walk are combined in such form as line 14.

Derived from the single-source PPR analysis [35, 61], we state that our Feature-Push

algorithm provides an unbiased estimation π̂(x; t) of the value π(x; t) as the following

lemma. By running Algorithm 3.1 feature by feature, the approximate calculation is also

applicable to the PPR matrix containing multiple vectors:

Lemma 3.1. Algorithm 3.1 produces an unbiased estimation π̂(x; t) of the value π(x; t)

satisfying Eq. (3.3). Repeating it for F times produces an unbiased estimation P̂ of the

embedding matrix P .
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Parallel Computation. Since Algorithm 3.1 processes one feature vector at a time, and

the execution of features is independent to each other, the acquisition on the estimation

matrix P̂ can be safely parallelized to further celebrate efficiency. In implementation,

each thread can simultaneously perform Algorithm 3.1 to compute the propagation from

the feature vector xf to the result PPR π̂(xf), corresponding to the f -th column from

matrix X to P̂ . As stated previously, the computation is localized to a single column

vector, hence performing parallel processing does not occur additional memory overhead.

3.2.3 Feature-Reuse

A key difference between the feature PPR and the classic single-source PPR is that,

in single-source PPR, queries on nodes are orthogonal to each other, while in feature

PPR there is similarity between different features. The feature-oriented calculation as

Algorithm 3.1 enables taking advantage of such property and utilizing computed values to

estimate the PPR of another similar feature.

We propose Feature-Reuse algorithm that speeds up the feature PPR computation by

leveraging and reusing the similarity between different feature vectors. We select a set of

vectors as the base vectors from all features and compute their PPR values by Feature-

Push. When querying the PPR value on a non-base feature vector, Feature-Reuse

separates a segment of the vector that can be obtained by combining the base vectors, and

estimate the PPR value of this segment directly with the PPR value of the base vectors

without additional Feature-Push computation overhead.

As a toy example, if we have the PPR π(b) for base feature vector b = (0.5, 0.5), and need

to compute the PPR for x = (0.4, 0.6), we can firstly decompose x = (0.4, 0.4) + (0, 0.2).

We then acquire the PPR for (0.4, 0.4) directly by 0.8π(b), and just need to compute

the PPR value of the residue (0, 0.2). Intuitively, the latter PPR calculation is faster

than directly processing the raw feature, thanks to the reduced dimension. We will later

elaborate in Theorem 3.4 that the computation complexity is actually positively related

to L1 norm ∥x∥1 of the residue vector.

To formulate the Feature-Reuse algorithm, we here derive it in the form of an op-

timization problem under our matrix notation. On the input side, the algorithm aims

to represent the feature matrix X by a partial of selected feature columns called base
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features. The number of base feature vectors is FB ≪ F and they compose the base

matrix XB = [b1, · · · , bFB
] , bf ∈X. Then, the entire feature matrix X can be written

as combinations of the bases:

X = XB ·Θ+Z, (3.4)

where Θ is the base coefficient matrix with shape FB×F , and Z = [z1, · · · , zF ] represents
the left values in features. Eq. (3.4) can be interpreted as a rank-FB decomposition on

raw matrix X plus a residue matrix.

To compute feature PPR, Feature-Push is applied to the column vectors of XB and Z

instead of X. The feature PPR estimation on the two matrices are denoted as P̂B and

P̂Z , respectively. Corresponding to Eq. (3.4), the approximate feature PPR on X can be

acquired by the combinations as:

P̌ = P̂B ·Θ+ P̂Z . (3.5)

Now that to accelerate the Feature-Push calculation especially on Z, we aim to sparsify

the residue vector by reducing the L1 norm of its column vectors ∥zf∥1. This is equivalent
to minimizing the L1 norm of matrix ∥Z∥1 =

∑F
f=1 ∥zf∥1 while ensuring the low rank

approximation Y = XBΘ is satisfied by selecting base features. Hence the overall

optimization goal is:

min rank(Y ) + η ∥Z∥1 , s.t. Y +Z = X. (3.6)

Eq. (3.6) indicates that, Feature-Reuse actually seeks to decompose feature matrix X

as the sum of a low rank component Y plus a sparse component Z. Such optimization

problem falls exactly the same as Robust Principal-Component Analysis (RPCA) [68, 69]

when η = 1√
n
, which can be effectively solved by convex optimization methods such as

alternating direction [70]. In general, [68] discovers that the problem can be transferred

into a pair of convex problems when only one term in the derived form of Eq. (3.6) is

variable and a generic Lagrange multiplier method can be applied. Such algorithm requires

only alternative matrix-wise operation and does not involve complex calculations, making

it highly efficient to execute. When the iteration converges, the result matrices Y and Z

are guaranteed to be low-rank and sparse, respectively.
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However, there are two major difficulties in directly exploiting the RPCA optimization

for our reuse task. Examining Eq. (3.6), its low rank matrix Y does not guarantee

the decomposition of XBΘ that includes base features XB inherited from X. Also,

considering the scale of the feature matrix is as large as O(nF ), it is inefficient to employ

the decomposition on the entire matrix. We hence propose several techniques to specifically

address these issues and achieve our Feature-Reuse algorithm.

Algorithm 3.2 shows the pseudo code of Feature-Reuse that utilizes a few base features

to efficiently compute the feature PPR on the entire matrix. In line 1-9, it first leverages

RPCA iterations on a sampled portion of the feature matrix to finds out base features

and corresponding combination coefficient. After concatenating the base feature and PPR

matrices (line 10-12), it reuses these calculation results on the other features to form the

approximate PPR matrix (line 13-17). We separately elaborate on these two phases.

Algorithm 3.2 Feature-Reuse

Input: Graph G, feature matrix X = [x1, · · · ,xF ], base size FB, reuse parameter γ,

error bound λ

Output: Approximate embedding matrix P̂

1 Sample feature matrix X ′ on node set U ′ ⊂ U

2 Y ,Z,E ← 0, µ← 1/nU ′

3 while ∥X ′ − Y −Z∥1 > λ∥X ′∥1 do

4 Z ← Thresholdµ(X
′ − Y −E)

5 U ,S,V ← SVDFB
(X ′ −Z +E), Y ← USV

6 E ←X ′ − Y −Z + µE

7 ψ1, · · · , ψFB
← argmin1≤ψi≤F

∑ψFB
f=ψ1
∥zf∥1

8 XB ← [xψ1 , · · · ,xψFB
], VB ← [vψ1 , · · · ,vψFB

]

9 Θ← V −1
B V , βs ← λ2

(2λ/3+2)·log(2n)
10 for i from 1 to FB do ▷ [in parallel]

11 π̂i ← Apply Alg. 3.1 on bi with βB = γβs

12 P̂B ← [π̂1, · · · , π̂FB
]

13 for f from 1 to F do ▷ [in parallel]

14 θf ← colf Θ, zf ← xf −XBθf

15 θsum =
∑FB

i=1 θfi

16 π̂f ← Apply Alg. 3.1 on zf with βZ = (1− γθsum) βs
17 π̌f ← π̂f + P̂Bθf

18 return P̌ = [π̌1, · · · , π̌F ]
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Base Selection on Matrix Portion. Feature-Reuse first optimizes the rank-FB and

sparse components from feature matrix. Line line 3-6 in Algorithm 3.2 corresponds to the

RPCA iterative solution [68], where Thresholdτ (x) = sgn(x)max(|x| − τ, 0) is shrinkage
operation that zeros elements with absolute value smaller than threshold τ , and SVDk(·)
is rank-k truncated singular value decomposition (truncated SVD). The decomposition

iteration is applied to a portion of feature matrix X ′, containing only a subset of nodes.

Studies show that the sampling size nU ′ can be as small as O(F 2) while preserving the

precision of RPCA decomposition [71]. Hence the complexity of such base selection scheme

can be bounded by O(nU ′FFB), which is free from the scale of the whole graph.

When the decomposition components Y and Z are computed from X ′, we utilize them

to estimate the feature reuse coefficient on the entire matrix. We first select the top-FB

indices ψ from all features with minimum decomposition error of respective residue vector

zf , i.e. columns of the sparse component Z. Features at these indices are hence regarded

as base features bi = xψi
. Meanwhile, the coefficient matrix Θ is computed from the low

rank components corresponding to the selected indices. This is because with neglectable

approximation errors, there is XB = USVB for bases and Y = XBΘ for all features.

Then in line 10-12, Feature-Push is invoked to acquire the feature PPR π̂(bi, βB) with

input vector bi and push parameter βB. The calculation results are stored to P̂B as

Eq. (3.5) for further reuse in the following phase.

Calculation Reuse on Sparse Residue. Algorithm 3.2 then computes the approximate

values of the rest features (line 13-17). For feature f , the f -th column vector θf of Θ

serves as the reuse coefficient of each bases. According to Eq. (3.4), values in the vector

xf that can be represented by base features are removed, and the residue vector is zf ,

which is sparse as RPCA optimizes. We compute the feature PPR π̂(zf , βZ) of such

sparse residue by Feature-Push. The push parameter βZ is dependent on the particular

reuse state of coefficient θf . Finally, the feature PPR π̌(xf) on raw feature xf can be

constituted as line 17, reusing the PPR computation results of base features.

Approximation Precision. In Algorithm 3.2, the result PPR of a base vector π̂(bi, βB) is

directly computed by Feature-Push in line 11 and has its accuracy guarantee according

to Theorem 3.1. However, the PPR of non-base features is from the combination in

line 17. How to assure that such approximation still satisfies the precision guarantee in

Definition 3.1? We demonstrate that the precision can be controlled by setting proper
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value to the push parameters βB and βZ when calling Feature-Push in line 11 and

line 16.

We first write the reuse combination Eq. (3.4) and Eq. (3.5) in our vector notation for a

feature xf . For simplicity we omit the subscript f :

x =

FB∑

i=1

θi · bi + z, (3.7)

π̌(x) =

FB∑

i=1

θi · π̂(bi, βB) + π̂(z, βZ). (3.8)

The following lemma depicts the precision constraint of π̌(x) in Eq. (3.8).

Lemma 3.2. Given a feature vector x, the ground truth of PPR vector is π(x), and the

estimation output by Eq. (3.8) is π̌(x). For any respective element π(x; t) and π̌(x; t),

|π(x; t)− π̌(x; t)| ≤ λ holds with probability at least 1− ϕ, for βZ such that βZ > βB and

βZ ≤
λ2/ log(2/ϕ)− 2

∑FB

i=1 θiβB
2λ/3 + 2

. (3.9)

Proof. Similar to the theory in [33], feature PPR can also be interpreted as the solution

of the following linear system:

π(x) = αx+ (1− α)AD−1π(x),

which can be transformed to

(I − (1− α)AD−1)π(x) = αx.

Denote non-singular matrix C = I − (1− α)AD−1. Then

π(x) = αC−1x.

The above equation indicates that feature PPR satisfies the associative law, which means

θπ(x) = π(θx) , π(x1) + π(x2) = π(x1 + x2).
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According to the associative law, the combination PPR π̌(x) expressed in Eq. (3.8) satisfies

E[π̌(x)] =
FB∑

i=0

θi · E[π̂(bi, βB)] + E[π̂(z, βZ)]

=

FB∑

i=0

θiπ(bi) + π̂(z) = π(

FB∑

i=0

θibi + z) = π(x).

Therefore π̌(x) is an unbiased estimation of π(x). For each base bi, we compute π̂(bi, βB)

with Algorithm 3.1. In each such computation of Algorithm 3.1, the left residue on each

node v before sampling random walks at line 10 is r(bi; v), the total left residue is rsum(bi),

and NW (bi) = rsum(bi)/βB is the number of random walks sampled.

As each base PPR is computed independently, combining the PPR vectors by
∑FB

i=0 θiπ̂(bi, βB)

is equivalent to push a vector θibi with the same pattern of the computing process of

π̂(bi, βB), and then sample NW (bi) random walks on the remaining residues of θirsum(bi)

in total.

For a such computing process on θibi, consider the NW (bi) random walks it generate from

all nodes. Let the random variable Xj(bi; t) = 1 if the j-th random walk terminates at t,

and otherwise be Xj(bi; t) = 0. Associating with the single-source PPR π(v, t), we have

E



NW (bi)∑

j=0

rsum(bi)

NW (bi)
Xj(bi; t)


 =

∑

v∈V

r(bi; v) · π(v, t). (3.10)

Consider the summation of all base vectors,

E



FB∑

i=0

NW (bi)∑

j=0

θirsum(bi)

NW (bi)
Xj(bi; t)


 =

FB∑

i=0

∑

v∈V

θir(bi; v) · π(v, t).

As we have the PPR estimation expressed in the form of combination of residue and

random walk values:

π̌(x; t) =

FB∑

i=0

θir(bi; t) + r(z; t)

+

FB∑

i=0

NW (bi)∑

j=0

θirsum(bi)

NW (bi)
Xj(bi; t) +

rsum(z)

NW (z)
Xj(z; t).
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By referring to Lemma 3.2 in [62], we can further acquire the precision guarantee of the

PPR as:

Pr[|π̌(x; t)− π(x; t)| > λ] ≤ 2 · exp(− λ2Nsum

2ν + 2aλ/3
), (3.11)

where the number of walks Nsum = NW (z) +
∑FB

i=0NW (bi),

a = Nsum ·max{ θ1rsum(b1)
NW (b1)

, · · · , θFB
rsum(bFB

)

NW (bFB
)
, rsum(z)
NW (z)

},

and

ν =
1

Nsum

FB∑

i=0

NW (bi)∑

j=0

(
θirsum(bi)Nsum

NW (bi)

)2

E[Xj(bi; t)]

+
1

Nsum

NW (z)∑

j=0

(
rsum(z)Nsum

NW (z)

)2

E[Xj(z; t)]. (3.12)

Recall that βZ < βB , therefore rsum(z)Nsum

NW (z)
> rsum(bi)Nsum

NW (bi)
holds for any bi, thence

a = rsum(z)Nsum

NW (z)
.

To simplify the expression of ν, we substitute Eq. (3.10) into Eq. (3.12) as:

ν =
1

Nsum

FB∑

i=0

θ2i rsum(bi)N
2
sum

NW (bi)
·
∑

v∈V

r(bi; v) · π(v, t)

+
1

Nsum

rsum(z)N
2
sum

NW (z)
·
∑

v∈V

r(z; v) · π(v, t)

≤
FB∑

i=0

θ2i βBNsum + βZNsum.

The last inequality is because of Definition 3.2, where the push coefficients are the scales

as βB = rsum(bi)/NW (bi), βZ = rsum(z)/NW (z). With the expressions on a and ν, we are

able to derive Eq. (3.11) as:

Pr[|π̌(x; t)− π(x; t)| > λ] ≤ 2 · exp(− λ2

2
∑FB

i=0 θ
2
i βB+2βZ+2βZλ/3

).
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By setting the value of βZ

βZ ≤
λ2/ log(2/ϕ)− 2

∑FB

i=0 βBθi
2λ/3 + 2

,

we hence prove that

Pr[|π̌(x; t)− π(x; t)| > λ] ≤ ϕ□.

Theorem 3.2 draws to the conclusion that, when choosing a smaller push parameter βB

for base vectors, the parameter βZ can be larger and reduce the cost of PPR computation

on most feature vectors. Hence we are particular interested in the upper bound of βZ

and set the actual value close to it. As Eq. (3.9) suggests, if βB are the same for all base

Feature-Push, then the upper bound of βZ is dependent on the sum of reuse coefficients

θsum =
∑FB

i=1 θi.

Based on Theorem 3.2, in Feature-Reuse algorithm we propose the reuse parameter γ

as the indicator of the balance between base push parameter βB and the one on residue

βZ . The following lemma states that by setting βB = γβs, βZ = (1 − γθsum)βs as in

Algorithm 3.2, it satisfies the precision guarantee in Definition 3.1:

Lemma 3.3. Given a feature set X, for any feature vector xf ∈X, Algorithm 3.2 returns

an approximate PPR vector π̌(xf), that any of its elements π̌(xf ; t) satisfies Eq. (3.3)

with at least 1− ϕ probability.

Proof. In Feature-Reuse, θsum =
∑FB

i=1 θi denotes the proportion of the feature vector

x computed by the base vectors, and the L1 length of the remaining part is 1 − θsum.
Then βZ satisfies:

βZ =
(1− γθsum)λ2

log(2/ϕ) · (2λ/3 + 2)
≤ λ2/ log(2/ϕ)

2λ/3 + 2
−

FB∑

i=1

βBθi

≤λ
2/ log(2/ϕ)− 2

∑FB

i=1 βBθi
2λ/3 + 2

.

Therefore, parameters βB for base vectors and βZ for remaining vectors satisfy Eq. (3.9).

According to Theorem 3.2 this lemma follows.
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Parallel Computation. The parallelism of Feature-Reuse is based on that of

Feature-Push. Since it is fully feature-oriented, each feature can still be computed

individually. For the bulk of the loops in Algorithm 3.2, i.e. line 10 and line 13 containing

PPR calculations, the processing can be parallelized.

3.2.4 Complexity Analysis

We then develop theoretical analysis on the time and memory complexity of SCARA.

For a single run of Algorithm 3.1, we have the following lemma:

Lemma 3.4. When the input vector is x, the time complexity of Feature-Push is

bounded by O(
√

m∥x∥1
β

).

Proof. We analyze the two parts of Algorithm 3.1 separately. The forward push with

early termination threshold rmax runs in O(∥x∥1/rmax) as it iteratively propagates the

residue value in the vector [35]. For random walks on feature residue, we employ the

complexity derived by [61] as O(m · rmax/β). Hence the overall running time of one query

in Algorithm 3.1 is bounded by O
(

∥x∥1
rmax

+ rmax · mβ
)
. By applying Lagrange multipliers,

the complexity is minimized when selecting rmax =
√

β∥x∥1
m

, and the balanced complexity

is O(
√

m∥x∥1
β

).

Utilizing Theorem 3.4, the time complexity of computing one feature PPR π̂(x, β) with

Algorithm 3.1 can be bounded by O(
√
m∥x∥1/β). To get PPR value with absolute error

guarantee of λ, Algorithm 3.1 requires a push parameter βs =
λ2/ log(2/ϕ)

2λ/3+2
. Then without

Feature-Reuse, the time complexity for computing PPR value for each normalized

feature vector is bounded by O(
√
m/βs).

When Feature-Reuse applies, let θsum =
∑FB

i=1 θi denote the proportion of a feature xf

computed by base vectors, and the L1 length of the rest x′ is 1− θsum. In Algorithm 3.2,

we compute the remaining part with push parameter of (1− γθsum)βs, where 0 < γ ≤ 1.

Recalling that the L1 length of the feature vector is reduced by θsum with Feature-Reuse,

we derive the time complexity of Feature-Reuse on x is O
(√

m(1−θsum)
βs(1−γθsum)

)
, which is

√
1−θsum
1−γθsum times smaller than those without Feature-Reuse.
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For example, if we compute θsum = 1/2 for a vector xf with the base vectors, and set

γ = 1/4, then the complexity of computing the PPR for xf is O(
√

4m/7βs), which is

substantially better than the consumption without Feature-Reuse O(
√
m/βs). The

overhead of each base vector is O(
√

4m/βs), which is only twice slower than the original

complexity. As we select only a few base vectors, the additional overhead produced by

computing base vectors is neglectable compared with the acceleration gained.

When Feature-Reuse applies, the complexity of computing a feature vector is not

worse than the complexity without Feature-Reuse, and is equivalent to the latter

only when θsum = 0 (i.e. the feature vector is completely orthogonal with the base

vectors). Therefore in the worst case, the complexity of SCARA on feature matrix X is

equivalent to repeating F queries of Algorithm 3.1. By setting ϕ = 1/n, we can derive

the time overhead of SCARA precomputation. For the complexity of memory, the usage

of a single-query Feature-Push can be denoted as O(n). Hence the precomputation

complexity of SCARA is given by the following theorem:

Theorem 3.5. Time complexity of SCARA precomputation is bounded by O
(
F
√
m log n/λ

)
.

Memory complexity is O (nF ).

3.3 Experimental Evaluation

We implement the SCARA model and evaluate its performance by experiments in the

aspects of both efficacy and scalability. From efficacy perspective, we compare the SCARA

performance with other scalable GNN competitors under similar parameter settings. To

demonstrate the scalability of our model, we further investigate its time and memory

overhead with these benchmarks.

3.3.1 Experiment Setting

Datasets. We adopt benchmark datasets of different graph properties, feature dimensions,

and data splitting for large-scale node classification tasks. We present the dataset statistics

in Table 3.1. Among the datasets, PPI, Yelp, and Amazon are for inductive learning, where

the training and testing graphs are different and require separate graph precomputation
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and propagation. The given original node splittings are in Table 3.1. The learning tasks

on the other datasets are transductive and are performed on the same graph structure.

For a dataset with Nc target classes, we refer to convention in [3, 26] to randomly sample

two sets of 20Nc and 200Nc nodes for training and validation, respectively, and the rest

labeled nodes in the graph as the testing set.

Metrics. Predictions on datasets PPI, Yelp, and MAG are multi-label classification

having multiple targets for each node. The other tasks are multi-class with only one

target class per node. We uniformly utilize micro F1-score to assess the model prediction

performance. For efficiency metrics, we record the precomputation, training, and inference

time of each model. We also measure the peak RAM memory in the whole process, as

the GPU memory is mainly determined by training batch size and less relevant. The

evaluation is conducted on a machine with Ubuntu 20 operating system, with 192GB

RAM, two 28-core Intel Xeon CPUs (2.2GHz), and an NVIDIA RTX A5000 GPU (24GB

memory). The implementation is by PyTorch and C++.

Baseline Models. We select the state-of-the-art models of different scalable GNN

methods as our baselines. GraphSAINT-RW [23] and GAS [24] are representative of

different sampling-based algorithms. For post- and pre-propagation decoupling approaches,

we respectively employ the most advanced PPRGo [26] and GBP [11]. For a fair comparison,

we mostly retain the implementations and settings from original papers and source codes.

We uniformly apply the same 32-thread parallel executions, which is a common setting in

practical application, for evaluations on all models unless specially mentioned.

Hyperparameters. For neural network architecture, we set layer depth L = 4, layer

width W = 2048 and W = 128 for inductive and transductive tasks, respectively, to be

Table 3.1: Dataset statistics and parameters. “Split” is the percentage of nodes in training/-
validation/testing set. “(i)” and “(t)” stand for inductive and transductive tasks. “(m)” and
“(s)” stand for multiple and single target classifications.

Dataset Nodes n Edges m Feat. F Classes Nc Split Prob. α Conv. r Common

PPI [19] 56, 944 818, 716 50 121 (m) 0.79/0.11/0.10 (i) 0.3 0.0

λ = 1× 10−4

FB = 0.02F
γ = 0.2

Yelp [23] 716, 847 6, 977, 410 300 100 (m) 0.75/0.10/0.15 (i) 0.9 0.3
Reddit [19] 232, 965 114, 615, 892 602 41 (s) 0.01/0.04/0.96 (t) 0.5 0.5
Amazon [22] 2, 400, 608 123, 718, 024 100 47 (s) 0.70/0.15/0.15 (i) 0.2 0.2
MAG [55] 27, 394, 820 366, 143, 207 200 100 (m) 0.01/0.01/0.99 (t) 0.5 0.5

Papers100M [72] 111, 059, 956 1, 615, 685, 872 128 172 (s) 0.78/0.08/0.14 (t) 0.5 0.5
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aligned with optimal baseline results in [11]. In model optimization, we utilize Adam

optimizer with a learning rate of 0.005. Training is employed in the mini-batch manner

when applicable, with respective batch size 2048 and 64 for inductive and transductive

learning. We train the model for a maximum of 1000 epochs with early stopping and

acquire the best model weights based on validation. Propagation-related parameters

including PPR teleport probability α, convolution coefficient r, push parameter λ, and

Feature-Reuse parameters including base size FB and reuse parameter γ are presented in

Table 3.1 per dataset. We further analyze the settings of these parameters in Section 3.3.3.

3.3.2 Performance Comparison

We evaluate the performance of SCARA and baselines in terms of both effectiveness and

efficiency. Table 3.2 shows the average results of repetitive experiments on 6 large datasets,

including the assessments on accuracy, memory, and the running time for different phases.

Among them the key metric is learning time, which is summed up by precomputation and

training times and presents the efficiency through the information retrieving process to

acquire an effective model. The training curves are given in Figure 3.1.

As an overview, the experimental results demonstrate the superiority of our model

achieving scalability throughout the learning phase. On all datasets, SCARA reaches

30− 800× acceleration in precomputation time than the best decoupling method, as well

as comparable or better training and inference speed, and significantly better memory

overhead. When the graphs are scaled-up, the time and memory footprints of SCARA

increase relatively slower than other GNN baselines, which is in line with our complexity

analysis. For prediction performance, SCARA converges stablely in all tasks and outputs

comparable or better accuracy than other scalable competitors.

In a more specific view from time efficiency, our SCARA model effectively speeds up

the learning process in all tasks, mostly thanks to the fast and scalable precomputation

for graph propagation. The simple neural model forwarding implemented in mini-batch

approach also contributes to the efficient computation of model training and inference. On

the largest available dataset Papers100M, our method efficiently completes precomputation

in 13 seconds, and finishes learning in an acceptable length of time, showing the scalability
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Figure 3.1: Validation F1 convergence curves of SCARA and baseline models on (a) Reddit,
(b) PPI, and (c) Yelp datasets. Curves only represents the process of training phase. Shaded
area is the result range of multiple runs.

of processing billion-scale graphs. In comparison among several datasets, the sampling-

based GraphSAINT and GAS achieve good performance, but the O(ILmF ) term in

training complexity results in great slowdown when graphs are scaled-up. GraphSAINT

is costly for its full-batch prediction stage on the whole graph, which is usually only

executable on CPUs. GAS is particularly fast for transductive inference, but it comes with

the price of trading off memory expense and training time to manipulate its cache. The

propagation decoupling models PPRGo and GBP show better scalability, but take more

time than SCARA to converge, due to the graph information yielded by precomputation

algorithms. It can be seen that their node-based propagation computations become less

efficient when the graph sizes grow larger, which aligns with our complexity analysis.

Remarkably, SCARA achieves about 800× and 200× faster for precomputation than

these two competitors on Reddit and Amazon.

Regarding memory overhead, our method also demonstrates its efficiency benefit from

its scalable implementation. We discover that the major memory expense of SCARA

only increases proportional to the graph attribute matrix, while PPRGo and GBP usually

demand twice as large RAM, and GraphSAINT and GAS use even more for their samplers.

SCARA is the only method that finishes computation on the billion-scale Papers100M

graph, while all other baselines meet out of memory error on our 192GB machine.

For learning effectiveness, SCARA achieves similar or better F1-score compared with

current GNN baselines. For 4 out of 5 datasets with comparable results, our model

outperforms both the state-of-the-art pre-propagation approach GBP and the scalable

post-propagation baseline PPRGo. Among other methods, GraphSAINT and GAS have

generally good performance for certain settings, but face the price of resource-demanding

learning and poor consistency across datasets.

36



Chapter 3. SCARA

Figure 3.1 shows the validation F1-score versus training time on representative datasets

and corresponding GNN models. It can be observed that when comparing the time

consumption to convergence, the SCARA model is efficient in reaching the same precision

faster than most methods. The performances of GAS and PPRGo in the figure are

relatively suboptimal because they are relatively less stable and require more time to

converge beyond the display scopes in Figure 3.1. It is worth noting that some baselines

fail to or only partially converge before training terminates in tasks such as PPI.

3.3.3 Effect of Parameters

In this section we explain the selection of different parameters. For the three parameters

in Feature-Push, intuitively, α is the PPR teleport probability of Feature-Push,

which is dependent on graph adjacency. The factor r controls the normalization strength

of the degree matrix D as shown in Eq. (3.1). Especially, when r = 0.5, it degrades to

the normalized adjacency matrix Ã presented in APPNP [25] and PPRGo [26]. The error

bound λ determines the approximation push coefficient β in Algorithm 3.1. Hence, λ is

used to configure the trade-off between precision and speed in precomputation and tends

to be larger for better efficiency.

Regarding the default selection in Table 3.1, we set the values of α and r for shared

datasets mainly in accordance to GBP [11, 12] in order to produce comparable results.

The rest Reddit and MAG are employed with the following strategy: we use r = 0.5 for

better comparison and generality, while α is decided based on graph edge density [26].

The error bound λ can be arbitrarily large as long as it does not reduce effectiveness,

we hence uniformly set it to λ = 1× 10−4 for all datasets to provide aligned evaluations

across datasets.

We conduct a grid search in Figure 3.2 on the value ranges of teleport probability α and

convolution coefficient r to examine their effect. In order to prevent potential influence,

we use the single-thread scheme for experiments in this section. It can be inferred that a

larger α has a slight improvement on precomputation efficiency, while r has no significant

impact. This is because in feature PPR, a larger α indicates a higher probability of the

propagation staying in the current node instead of further traveling to its neighbors. The

accuracy is relatively not sensitive with variance inside the error range (±1%) as long as
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Figure 3.2: Effect of propagation parameters
teleport probability α and convolution coeffi-
cient r on SCARA (a) efficiency and (b) test-
ing accuracy on Reddit dataset.
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Figure 3.3: Effect of reuse precision param-
eter γ and base set size FB on SCARA (a)
precomputation time and (b) average embed-
ding value difference on Reddit dataset.

α and r values are not too extreme. It indicates that the model is robust to the changes

of both parameters, based on which we are able to conclude that the parameters can be

determined without requiring a sophisticated tuning.

For the base size FB and push parameter γ in Feature-Reuse, we conduct additional

experiments to empirically explore the algorithmic sensitivity. As above experiments show

that the neural network is relatively robust and patterns are hard to infer from the testing

accuracy, we thence particularly investigate the propagation stage. We use the embedding

difference, which is calculated by the average absolute difference of each element in the

embedding matrix P comparing with SCARA without Feature-Reuse, as the indicator

of the feature PPR precision.

Figure 3.3 presents the result on precomputation time and precision on Reddit dataset. For

comparison, single-thread repetitive Feature-Push precomputation without Feature-

Reuse uses 2.37s. It can be observed that both FB and γ influence Feature-Reuse

efficiency for less than ±0.2s. Intuitively, a larger set of base features FB requires more

additional calculation time, hence hinder the overall efficiency. On the contrary, the factor

γ affects less on performance as the residue vectors are still processed by subsequent

calculations. The difference of embedding values is at the level of 10−8, which is significantly

smaller than the algorithmic error bound λ = 10−4. Generally, a more aggressive reuse

scheme results in relatively higher average approximation errors of the embedding values.

We hence conclude that our parameter settings FB/F = 0.02 and γ = 0.2 are effective for

the general evaluation of SCARA.
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Figure 3.4: Precomputation time of SCARA and decoupling baselines with different parallel
schemes on (a) Reddit and (b) Amazon datasets. Note that both axes are on a log scale.

3.3.4 Effect of Parallel Computation

We then employ additional experiments to study the speed-up on precomputation time

brought by parallel processing. Particularly, we compare against the decoupling methods

PPRGo and GBP, since sampling-based baselines GraphSAINT and GAS cannot be fit

into the similar parallel scheme by design. Figure 3.4 displays the efficiency results with

the number of threads ranging from 1 to 32.

The experimental evaluation shows that SCARA achieves near-linear improvement when

the number of parallel workers increases, demonstrating its feasibility for parallelism.

Thanks to its feature-oriented design, each feature can be processed independently with

efficient cache performance. Generally, adopting parallelization accelerates the precom-

putation by up to 10×. However, employing 32 or more threads does not significantly

further improve the efficiency, especially on smaller datasets. We argue that in this case,

the main overhead becomes those non-parallelized operations.

In comparison, the two baselines PPRGo and GBP present both longer precomputation

time, as well as less relative speed-up in parallelism. For PPRGo, the processing time

on Reddit keeps constant even when adding more threads, implying that most of its

computation expenses cannot be optimized by employing the parallel scheme.
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3.3.5 Effect of Feature-Reuse

To examine the contribution of Feature-Reuse technique utilized in our SCARA model,

we conduct ablation study to compare the performance of the reuse scheme proposed

in Algorithm 3.2. In following notation, SCARA is the model with Feature-Reuse

in precomputation following Algorithm 3.2. We compare it with the bare iterative full-

precision Feature-Push without Feature-Reuse. Similarly, we test all related methods

in single-thread execution to avoid noise.

We here consider the feature size as a factor of particular interest, as Feature-Reuse

is a feature-oriented optimization design. We sample the node feature vectors x in the

Reddit dataset to generate feature matrices X ∈ Rn×F ′
with different feature numbers F ′.

Using these features as input, we respectively evaluate the performace of graph learning.

The results of average times and testing accuracies for the three variants are given in

Table 3.3. Element-wise embedding value differences with regard to the Feature-Push

result are also presented for the two reuse schemes.

By comparing the speed-up relative to Feature-Push without reuse, we state that

Feature-Reuse substantially reduces the precomputation time for different node feature

sizes. When the number of features increases, the algorithm benefits more acceleration

from adopting the optimization scheme and reusing previous computations. For the

full-size feature matrix with greatest improvement, SCARA achieves 3.6× speed-up

compared to Feature-Push.

Examining the reuse precision, it is inferred from Table 3.3 that Feature-Reuse causes

no significant difference on model effectiveness, as minor accuracy fluctuations are under

Table 3.3: Performance of SCARA variants on precomputation time (s), testing accuracy
(%), and average embedding value difference (×10−8) for Reddit dataset with different feature
dimensions F ′.

Feature Size F ′ = 100 F ′ = 200 F ′ = 400 F ′ = 602

Precomp. Time
Feature-Push 0.38 0.77 1.52 2.37

SCARA 0.14 0.24 0.46 0.65

Accuracy
Feature-Push 32.7 36.6 42.0 43.9

SCARA 32.8 36.6 42.0 44.1

Embedding Difference SCARA 0.4 0.3 0.6 2.4
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the error bound of repetitive experiments. Interestingly, even with a feature dimension of

F ′ = 100, the model achieves 32.8% testing accuracy, indicating that our feature PPR

embedding matrix is capable to store adjacency and feature information that is sufficient

for model learning.

3.4 Summary and Discussion

In this work, we propose SCARA, a scalable Graph Neural Network algorithm with

feature-oriented optimizations. Our theoretical contribution includes showing the SCARA

model has a sub-linear complexity that efficiently scales-up the graph propagation by

two algorithms, namely Feature-Push and Feature-Reuse. We conduct extensive

experiments on various datasets to demonstrate the time and memory scalability of

SCARA in learning and inference. Our model is efficient to process billion-scale graph

data and achieves up to 800× faster than the current state-of-the-art scalable GNNs in

precomputation, while maintaining comparable or better accuracy.

We also note two potential extensions of our current model. Firstly, the SCARA model is

designed for common homophilous graphs, where similar nodes tend to be connected with

each other, and the Feature-Push propagation based on node neighbors is beneficial

to the performance. However, not all graph datasets follow such assumption, and these

graphs under heterophily would require specific approaches. Secondly, SCARA focuses on

the precomputation improvement of pre-propagation decoupled model. Although demon-

strating strong performance, the decoupling scheme is fixed with regard to architectural

design, resulting in limited flexibility when adapting to different downstream tasks. It

would be of potential interest to explore generalizing the SCARA optimization to other

types of GNN models. In the next chapter, we propose a model attempting to address the

first issue on heterophilous graphs.
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Scalable Heterophilous Graph Neural

Network with Decoupled Embedding

4.1 Introduction

Graph Neural Networks (GNNs) combine graph processing techniques and neural networks

to learn from graph-structured data, and have shown remarkable performance in recent

advances of graph learning. Common GNN models rely on the principle of homophily,

which assumes that connected nodes tend to be similar to each other in terms of classes

[73]. This inductive bias introduces additional information from the graph structure and

improves model performance in applicable tasks [74].

However, this assumption does not always hold in practice. A broad range of real-world

graphs are heterophilous, where class labels of neighboring nodes usually differ from

the ego node [75]. In such cases, the aggregation mechanism employed by conventional

GNNs, which only passes messages from a node to its neighbors, may mix the information

from non-homophilous nodes and cause them to be less discriminative. Consequently,

the locality-based design is considered less advantageous or even potentially harmful in

This work is based on the work: Ningyi Liao, Siqiang Luo, Xiang Li, Jieming Shi. “LD2: Scalable
Heterophilous Graph Neural Network with Decoupled Embedding”. Under submission of the 37th
Conference on Neural Information Processing Systems.
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these applications [47, 76]. Various models have been proposed to address the heterophily

problem, giving rise to a class of specialized GNNs known as heterophilous GNNs. Common

strategies to address heterophily include discovering non-local or global graph relations [38,

39, 41, 43, 77, 78], and retrieving expressive node information through enhanced network

architectures [32, 40, 44–46, 79].

Scalability has become a prominent concern in GNN studies. The ever-increasing sizes

of graph data nowadays can easily exceed the memory limit of devices such as GPUs,

rendering these solutions impractical for large-scale tasks [28, 80]. We observe that this

issue is particularly critical in the context of heterophilous GNNs, due to an inherent

conflict that most current models have not taken into account: heterophily-oriented

designs usually rely on non-local information calculated by certain types of whole-graph

operations. As the graph structure is involved, the time and memory overhead escalates

substantially with the graph size. A recent investigation [42] reveals that all the evaluated

full-graph GNNs run out of 24GB GPU memory when applied to the million-scale graph

wiki (1.77M nodes, 244M edges). It is thus crucial to develop GNNs scalable to large

graphs while retaining the capability for heterophily.

In this work, we examine the scalability problem and propose LD2, a scalable GNN

model for heterophilous graphs with Low-Dimension embeddings and Long-Distance

aggregation. The model highlights simplicity by decoupling graph dependency from

iterative computations and solely learning from multiple precomputed embeddings. Derived

from node attributes and graph topology, these novel embeddings are able to aggregate

node relations of varying objectives and distances in the graph into low-dimensional

features. To facilitate the decoupled scheme, we specifically propose an algorithm to

efficiently estimate all embeddings before training, which enjoys time complexity only

linear to the graph scale and a guaranteed precision bound. After the precomputation,

a simple but powerful multi-channel neural network is subsequently employed to learn

from the extracted node features. Theoretical and empirical results showcase that the

combination of embeddings effectively retrieves representations among heterophilous nodes.

On the efficiency aspect, LD2 benefits from its scalable design, including a straightforward

minibatch scheme, optimal training and inference time, and superior memory utilization.
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4.2 Method

In this section, we first present an overview of the LD2 model in Section 4.2.1, then

respectively motivate the selection of the adjacency embedding and feature embedding

in Sections 4.2.2 and 4.2.3. Lastly, an end-to-end scalable algorithm, namely A2Prop, is

proposed in Section 4.2.4 to efficiently and concurrently compute all the embeddings.

4.2.1 LD2: A Decoupled Heterophilous GNN

In order to achieve superior time and memory scalability for heterophilous GNNs, we

employ the concept of decoupling, which removes the dependency of graph adjacency prop-

agation in training iterations. The main idea of our model is first generating embeddings

from raw features including node attributes and adjacency in a precomputation stage.

Then, these embeddings are taken as inputs to learn representations by a simple neural

network model. We embrace the multi-channel architecture [46, 81] to enhance flexibility,

where the input data is a list consisting of embedding matrices [P1,P2, · · · ,PC ]. Each

embedding is separately processed and then merged in the network.

LD2 utilizes diverse embeddings based on pure graph adjacency and node attributes,

denoted as PA(A) and PX(X,A), respectively. Both types of embeddings can be produced

by our precomputation A2Prop following Algorithm 4.1. The initial layer of the LD2

n
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X
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Figure 4.1: LD2 framework: decoupled precomputation and training.
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network applies a separate linear transformation to each embedding input, and the results

are concatenated to form the representation matrix. Lastly, an L-layer MLP is leveraged

for the classification task. The high-level framework of LD2 is depicted in Figure 4.1 and

can be expressed as follow: The overall framework can be expressed as follow:

Precompute : PA,PX = A2Prop(A,X), (4.1)

Transform : H(L) = MLP(PAWA∥PXWX). (4.2)

Training/Inference Complexity. Our decoupled model design enables a simple on-

demand minibatch scheme in training and inference, that only nb rows corresponding

to the batch nodes in the embedding matrices are loaded into GPU and processed by

the network transformation. For LD2 with C channels, the GPU memory footprint is

therefore bounded by O(LCnbF + LCF
2). It is worth noting that such complexity does

not depend on the graph scale n or m. Consequently, the training is freely configurable

with an arbitrary GPU memory budget. Regarding computation operations, the time

complexity of forward inference through the graph is O(LnF 2), being just linear to n. As

the memory and time complexity only contain essential operations of MLP transformation

with no additional expense, this is the optimal scale with respect to the iterative training

of GNN architectures.

4.2.2 Low-dimension Adjacency Embedding

Several studies reveal that, despite the feature information of nodes, the pure graph

structure is equally or even more important in the context of heterophilous GNNs [38, 42,

75]. Particularly, the most informative aspects are often associated with 2-hop neighbors,

i.e., “neighbors of neighbors” of ego nodes. [43] proves that even under heterophily, the

2-hop neighborhood is expected to be homophily-dominant. We thence intend to explicitly

model such topological similarity.

The 2-hop relation can be described by the 2-hop adjacency matrix A2. Note that as

the sparse matrix A has m entries, the number of entries in A2 is at the scale of O(md),

which indicates that directly applying 2-hop graph propagation in the training stage will

demand even more expensive time and memory overhead to be scaled up. We instead

propose an approximate scheme that seeks to prevent the 2-hop adjacency from repetitive
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processing, and retrieves a low-dimensional but expressive embedding prior to training in

the precomputation stage. In other words, we utilize the embedding to resemble 2-hop

information which can be directly learned by the neural network transformation. Denote

the F -dimensional embedding as PA ∈ Rn×F . We aim to minimize its approximation error

in Frobenius norm (∥ · ∥F ):

PA = argmin
P∈Rn×F

∥A2 − PP T∥2F . (4.3)

The solution to Eq. (4.3) can be derived from the eigendecomposition of the symmetric

matrix A2, that P ∗
A = U |Λ|1/2, where Λ = diag(λ1, · · · , λF ) is the diagonal matrix

with top-F eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λF , and U ∈ Rn×F is the matrix consisting of

corresponding orthogonal eigenvectors. The eigenvalues are also called frequencies of the

graph, and large eigenvalues of the adjacency matrix refer to low-frequency signals in the

graph spectrum.

Spectral Analysis. Let A2(u, v) be the entry (u, v) of matrix A2. Its diagonal degree

matrix is D2 = diag(d2(1), d2(2), · · · , d2(n)), d2(u) =
∑

v∈V A
2(u, v). Denote PA(u) as

the F -dimensional embedding vector of node u. We show that the embedding P ∗
A defined

by Eq. (4.3) is also the solution to the following optimization problem:

PA = argmin
P∈Rn×F ,P⊤D2P=Λ

∑

u,v∈V

A2(u, v)∥P (u)− P (v)∥2. (4.4)

This is because:

∑

u,v

A2(u, v)∥P (u)− P (v)∥2 = 2
∑

u

d2(u)∥P (u)∥2 − 2
∑

u,v

A2(u, v)P (u)P (v)

= 2 tr(P⊤D2P − P⊤A2P ).

As P⊤D2P is fixed, finding the minimum of Eq. (4.4) is equivalent to optimizing

maxP P⊤A2P , of which the solution is exactly P ∗
A according to the property of eigenvec-

tors. Equation (4.4) implies that, 2-hop neighbors (u, v), t ∈ N (u), v ∈ N (t) in the graph

will share similar embeddings PA(u) and PA(v).
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In fact, the low-dimensional embedding P ∗
A can be interpreted as the adjacency spectral

embedding of the 2-hop graph A2. Graph spectral embedding is a technique concerning

the low-frequency spectrum of a graph, and is employed in tasks such as graph clustering

[82]. As PA corresponds to the dominant eigenvalues of A2, the embedding provides

an approximate representation of the 2-hop neighborhoods based on the overall graph

topology.

Alternatively, if we regard the adjacency information solely as features input into the

network like LINKX, PA correlates to the uncentered principal components of matrix

A. Thus learning a linear transformation PAWA with weight matrix WA ∈ RF×F is

the low-rank approximation of AWA0 where WA0 ∈ Rn×F , but with less computational

cost. Compared to other works attempting to generate graph embeddings based on graph

geometric or similarity measures [33, 38, 45, 78, 83], our approach offers the advantages

of lower dimensionality and efficient calculation as demonstrated in Section 4.2.4.

4.2.3 Long-distance Feature Embedding

Decoupling the node features through approximate propagation has been extensively

studied in regular GNNs with various schemes [12, 25–27, 36, 37]. Nonetheless, these

approaches are based on the homophily assumption and focus on local neighborhoods.

In order to apply decoupled propagation to heterophilous graphs and exploit the multi-

channel ability of our model, we formulate the general form of approximate propagation

as the weighted sum of powers of a propagation matrix applied to the input feature:

PX =

LP∑

l=1

θlT
lX, (4.5)

where examples of matrix T include Ã and L̃, which respectively correspond to aggregative

and discriminative operations.

LD2 jointly utilizes the following channels:

(1) Inverse summation of 1-hop Laplacian propagations where θl = 1, T = L̃:

PX,H =
1

LP,H

LP,H∑

l=1

L̃lX;
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(2) Constant summation of 2-hop adjacency propagations where θl = 1, T = Ā2:

PX,L2 =
1

LP,L2

LP,L2∑

l=1

Ā2lX;

(3) raw node attributes where θ1 = 1, θl = 0(l > 1), T = I:

PX,0 = X.

Intuitively, the first two channels perform distinct propagations on node feature X as

illustrated in Figure 4.2, and employ inverse or constant summation to aggregate multi-hop

information, in contrast to the local decaying summation (l → ∞, θl → 0) commonly

adopted in homophilous GNNs. Hence, such summations are suitable for retrieving long-

range information under heterophily. The raw matrix X is also directly used as one input

channel to depict node identity, which is a ubiquitous practice known as skip connection,

identity mapping, or all-pass filter in heterophilous GNNs [32, 41, 46, 84].

u0 u1 u2 u3 u4

+ +

− + − +

2-hop 2-hop

1-hop 1-hop 1-hop 1-hop

y0=0 y1=1 y2=0 y3=1 y4=0

Inverse 1-hop Laplacian Propagation

Constant 2-hop Adjacency Propagation

PL2
(0) PL2

(2) PL2
(4)

PH
(0) PH

(1) PH
(2) PH

(3) PH
(4)

Figure 4.2: Two types of LD2 propagations
under heterophily.

The inverse embedding PX,H is based on

the intuition that, as neighbors tend to be

different from the ego node, their features

are also dissimilar. Hence in propagation,

the embedding of the ego node should con-

tain the previous embedding of itself, as

well as the inverse of adjacent embeddings,

which is exactly the interpretation of prop-

agating node features by graph Laplacian

matrix L̃ = I − Ã. The second embed-

ding PX,L2 performs a 2-hop propagation

through the graph and aggregates the re-

sults of multi-scale neighbors. It echoes the earlier statement on the importance of 2-hop

adjacency Ā2 from the feature aspect. Note that for high-order propagation here, adja-

cency matrix Ā escaping self-loops is shown to be advantageous in capturing non-local

homophily [43, 79].
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Spectral Analysis. Assume that ∥X(u)∥ = ∥P (u)∥ = 1. We first examine the following

regularization problem optimizing P based on input X for homophilous graphs [36]:

PX,L = argmin
∥P (u)∥=1,∀u∈V

∑

u,v∈V

Ã(u, v)∥P (u)− P (v)∥2 + ∥P −X∥2F . (4.6)

Differentiating the objective function with respect to P leads to:

(I − Ã)P −X = 0.

Therefore the solution is:

P ∗
X,L = (I − Ã)−1X =

∞∑

l=0

ÃlX.

In the implementation, a limited LP,L-hop summation is used instead due to the over-

smoothing issue that the infinite form converges to identical embeddings across nodes.

This low-pass filter PX,L = 1
LP,L

∑LP,L

l=0 ÃlX is investigated in S2GC [36] as an approach

for balancing locality and multi-hop propagation. Its interpretation can be observed from

its objective function Eq. (4.6), that it simultaneously minimizes the embedding difference

of neighboring nodes as well as the approximation closeness to the input feature X.

To obtain our first channel, we preferably introduce the low-frequency regularization to

2-hop adjacency, as 1-hop neighbors exhibit heterophily. Therefore, replacing Ã(u, v) in

Eq. (4.6) with Ā2(u, v) yields our constant 2-hop embedding PX,L2. It shares similar

spectral properties with S2GC for acting as a low-pass filter in 2-hop neighborhoods, while

maintaining certain long-distance knowledge thanks to the multi-scale aggregation.

The other channel utilized in LD2, i.e. the inverse Laplacian propagation, can be derived

as:

PX,H =
1

LP,H

LP,H∑

l=1

L̃lX

=
1

LP,H

LP,H∑

l=1

(IX − ÃlX)

= X − PX,L.
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From the above analysis, X is the feature from all-pass filters for each hop, while PX,L

being the low-frequency information. The embedding PX,H thus acts as a high-pass

filter applied to the input feature, focusing on discriminative structures. In terms of

spatial domain interpretation, high-frequency information corresponds to the embedding

differences between the ego node and 1-hop neighbors [44]. It is noticeable that these

three channels PX,L2,PX,H ,PX,0 respectively represent low-pass, high-pass, and all-pass

propagations through the graph while addressing heterophily. Combining them as inputs

to the neural network benefits model performance by expressive information at various

distances including identity, local, and global perspectives.

4.2.4 Approximate Propagation Precomputation

Conventionally, calculating the graph propagation Ã · P for an arbitrary feature matrix

P is conducted by sparse-dense matrix multiplication. However, such an approach does

not recognize the property of the adjacency matrix Ã, that it can be represented by the

adjacency list of nodes, and non-zero values in its data are solely determined by node

degrees. Furthermore, since the propagation result is subsequently processed by the neural

network, it is not necessary to be precise as the model is robust to handle noisy data

[80, 85]. We first define the precision bound for approximate embedding:

Definition 4.1 (Approximate Vector Embedding). Given a relative error bound

0 < ϵ < 1, a norm threshold δ > 0, and a failure probability 0 < ϕ < 1, the estimation

P̂ (u) for an arbitrary embedding vector P (u) should satisfy that, for each u ∈ V with

∥P (u)∥ > δ, such that with probability at least 1− ϕ,

∥P (u)− P̂ (u)∥ ≤ ϵ · ∥P (u)∥. (4.7)

Graph power iteration algorithm is the variant of power iteration particularly applied for

calculating powers of adjacency matrix A. In essence, the algorithm can be derived by

maintaining a residue R(l)(u) that holds the current l-hop propagation results for each node,

and iteratively updating the next-hop residues of neighboring nodes R(l+1)(v), v ∈ N (u)

for all nodes u. For each iteration, the reserve P̂ (l) is also added up and converges to an

underestimation of P .
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We propose Algorithm 4.1 for our specific scenario, namely Approximate Adjacency

Propagation (A2Prop). Based on power iteration, our algorithm is greatly generalized to

accommodate normalized adjacency, feature vectors for nodes, and a limited number of

hops. We show that the algorithmic output can be bounded by Definition 4.1. For LP

iterations, denote the acceptable error per entry for push as δP , the matrix-wise absolute

error is:

∥P − P̂ ∥1,1 ≤
LP∑

f=1

F∑

f=1

∑

u∈V

d(u)δP = LPmFδP .

By setting δP = ϵδ/LPm, the estimation P̂ satisfies Definition 4.1.

Approximate Feature Embedding. The feature embedding in the form PX =
∑LP

l=0 T
lX

can be computed by iteratively applying graph power iterations to the raw feature as

initial residue R(0) = X. The implicit propagation behavior is described by the ma-

trix T . For example, for Laplacian propagation T = L̃, the ego node u residue is

updated by R(l+1)(u) = R(l+1)(u) +R(l)(u), while its neighbors v ∈ N (u) are affected as

R(l+1)(v) = R(l+1)(v)−R(l)(u)/da(v)db(u). Hence we introduce a propagation coefficient

Algorithm 4.1 A2Prop: Approximate Adjacency Propagation

Input: graph G, feature matrix X, max hop LP , normalization factor a, b, propagation

factor αT , summation factor θl, push threshold δP

Output: adjacency embedding PA, feature embedding PX

1 R
(0)
A ← N(0, 1), R

(0)
X ←X

2 for l from 0 to LP − 1 do

3 for all u ∈ V such that ∥R(l)(u)∥ > δP do

4 for all v ∈ N (u) ∩ {u} do
5 R

(l+1)
A (v)← R

(l+1)
A (v) + αA(u, v) ·R(l)

A (u)

6 R
(l+1)
X (v)← R

(l+1)
X (v) + αT (u,v)

da(v)db(u)
·R(l)

X (u)

7 PX(u)← PX(u) + θl ·R(l)
X (u)

8 if l mod 2 = 1 and l < LP − 1 then

9 PA ← orthonormalize(R
(l)
A )

10 empty R
(l)
A ,R

(l)
X

11 PA ← PA · |(R(LP )
A )⊤ · PA|1/2

12 PX ← PX + θLP
·R(LP )

X

13 return PA,PX
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αT (u, v), that αL(u, u) = da+b(u), αL(u, v) = −1, v ∈ N (u). For propagation Ã and Ā,

the coefficient is just αA(u, v) = 1 with αA(u, u) = 1, 0, respectively.

In each iteration l, the reserve is updated after propagation according to the coefficient θl

to sum up corresponding embeddings. Intuitively, one multiplication of Ā2 is equivalent

to two iterations of Ā propagation. Hence for PX,L2 there is θl = l mod 2 = 0, 1, 0, 1, · · ·
under the summation scheme in Algorithm 4.1. Since all embeddings we consider are

constant, that is, θl ∈ {0, 1}, the reserve can be simply increased without the rescaling

terms in more general cases such as [12].

Approximate Adjacency Embedding. The adjacency embedding is represented by

leading eigenvectors PA = U |Λ|1/2. This eigendecomposition of A2 can be solved by

the truncated power iteration: Initialize the n × F residue by i.i.d. Gaussian noise

R(0) = N(0, 1). For each iteration l, firstly multiply the residue by A2 as R(l+1) = A2R(l);

then, perform column-wise normalization to the residue orthonormalize(R(l+1)) so that

its columns are orthogonal to each other and of L2 norm 1. After convergence, the matrix

satisfies A2R(LP ) = R(LP )Λ within the error bound, which leads to the estimated output

Û = R(LP ), P̂A = Û |Λ̂|1/2.

Similarly, the 2-hop power iteration of PA can be merged with those for PX with a

shared maximal iteration LP , and orthonormalization is conducted every two A iterations.

When the algorithm converges with error bound δ, the number of iteration follows

LP = O(log(F/δ)/(1−|λF+1/λF |)). By selecting proper values for F and δ, the algorithm

produces satisfying results within LP iterations.

Precomputation Complexity. Since A2Prop serves as a general approximation for

various adjacency-based propagations, the computation of all feature channels can be

performed simultaneously in a single run. The memory overhead of the algorithm is

mainly the residue and reserve matrices for C embedding channels, which is O(CnF ) in

total. Note that A2Prop precomputation is performed in the main memory, and benefits

from a less-constrained budget compared to GPU memory.

For each iteration, neighboring connections are accessed for at most m times. The time

complexity of Algorithm 4.1 can thus be bounded by O(LPmF ). Its loops over nodes

and features can be parallelized and vectorized to reduce execution time. Moreover, the

power iteration design is also amendable for further enhancements, such as reduction to
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sub-linear complexity, better cache performance, and precision-efficiency trade-offs. We

leave these potential improvements on A2Prop for future work.

4.3 Experimental Evaluation

We implement the LD2 model and evaluate its performance from the perspectives of both

efficacy and scalability. We mainly highlight key empirical results compared to minibatch

GNNs on large-scale heterophilous graphs.

4.3.1 Experiment Setting

Datasets. We mainly perform experiments on large-scale heterophilous datasets [38, 42]

for the transductive node classification task, with the largest available graph wiki (m =

244M) included. We leverage settings as per [42] such as the random train/test splits and

the induced subgraph testing for GSAINT-sampling models, while addressing several issues

revealed by [86] before assessments. Statistics of these datasets are listed in Table 4.1,

including the 1-hop and 2-hop node homophily scores for non-multilabel datasets. The

empirical results support our analysis that regardless of heterophily, 2-hop neighbors in

the graph tend to exhibit higher homophily.

Table 4.1: Dataset statistics and homophily scores. Hn,1 and Hn,2 are 1-hop and 2-hop
homophilous scores, respectively.

Dataset Nodes n Edges m d F Nc Notes Hn,1 Hn,2

squirrel [38] 5, 201 401, 907 77.275 2, 089 5 – 0.217 0.214
penn94 [42] 41, 536 1, 403, 756 33.796 4.814 2 – 0.504 0.478

arxiv-year [42] 169, 343 1, 327, 142 7.837 128 5 directed 0.289 0.337
genius [42] 421, 858 1, 344, 722 3.188 12 2 – 0.368 0.823

twitch-gamers [42] 168, 114 6, 965, 671 41.434 7 2 – 0.562 0.531
pokec [42] 1, 632, 803 23, 934, 767 14.659 65 2 – 0.454 0.605

snap-patents [42] 2, 738, 035 16, 705, 984 6.101 269 5 directed 0.220 0.298
wiki [42] 1, 770, 981 244, 278, 050 137.934 600 5 – 0.306 –
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Baselines. We focus on GNN models applicable to minibatch training in our evaluation

regarding scalability, and hence most full-batch networks are excluded in the main ex-

periments. Conventional baselines include MLP which only processes node attributes

without considering graph topology, as well as PPRGo [26] and SGC [27] representing

decoupled schemes for homophilous graphs. GCNJK [40] and MixHop [41] are GNNs

under non-homophily. GSAINT random walk sampling [23] is utilized to empower them

for minibatching. LINKX is the decoupled heterophilous GNN proposed by [42]. Simple

i.i.d. node batching is adopted for decoupled networks.

Model and Training Hyperparameters. We particularly explore model hyperparam-

eters including the number of layers L, i.e. model depth, and the number of hidden

size, i.e. layer width, since these settings are mostly correlated with the efficacy and

efficiency performance of models. For minibatch training, we comprehensively tune the

hyperparameters of batch size and learning rate among baselines to produce comparable

performance. We exploit the validation set to select the training epoch with best validation

accuracy, and use early stopping if the model training converges.

We select above hyperparameters based on the following principle: We first refer to their

original papers and implementations and explore model depth and width, in order to

achieve relatively optimal reproduced performance. Then we select the largest batch size

applicable to the GPU while preventing out of memory error for efficiency consideration.

Other hyperparameters including weight decays and learning rates are tuned accordingly.

For other architectural and training settings, we mostly follow the implementation in [42]

when applicable, in order to produce similar evaluation to the benchmark.

Evaluation Metrics. We uniformly use classification accuracy on the test set to measure

network effectiveness. Note that since the datasets are updated and the minibatch

scheme is employed, results may be different from their original works. In order to

evaluate scalability performance, we conduct repeated experiments and record the network

training/inference time and peak memory footprint as efficiency metrics. For precomputed

methods, we consider the learning process combining both precomputation and training.

Evaluations are conducted on a machine with 192GB RAM, two 28-core Intel Xeon CPUs

(2.2GHz), and an NVIDIA RTX A5000 GPU (24GB memory).
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Table 4.2: Average test accuracy (%) of minibatch LD2 and baselines on heterophilous
datasets. “> 12h” means the model requires more than 12h clock time to produce proper results.
Respective results of the first and second best performances on each dataset are marked in bold
and underlined fonts.

Dataset squirrel genius penn94 arxiv-year twitch pokec snap-patents wiki

MLP 33.16 ±0.59 82.47 ±0.06 74.41 ±0.48 37.23 ±0.31 61.26 ±0.19 61.81 ±0.07 23.03 ±1.48 35.64 ±0.10

PPRGo 33.95 ±0.49 79.81 ±0.00 58.75 ±0.31 39.35 ±0.12 47.19 ±2.26 50.61 ±0.04 (> 12h) (> 12h)

SGC 59.39 ±0.62 79.85 ±0.01 68.31 ±0.27 43.40 ±0.16 57.05 ±0.21 56.58 ±0.06 37.70 ±0.06 28.12 ±0.08

GCNJK-GS 27.63 ±4.72 80.65 ±0.07 65.91 ±0.16 48.26 ±0.64 59.91 ±0.42 59.38 ±0.21 33.64 ±0.05 42.95 ±0.39

MixHop-GS 33.24 ±2.44 80.63 ±0.04 75.00 ±0.37 49.26 ±0.16 61.80 ±0.00 64.02 ±0.02 34.73 ±0.15 45.52 ±0.11

LINKX 60.14 ±0.92 82.51 ±0.10 78.63 ±0.25 50.44 ±0.30 64.15 ±0.18 68.64 ±0.65 52.69 ±0.05 50.59 ±0.12

LD2 (ours) 66.87 ±0.02 85.31 ±0.06 75.52 ±0.10 50.29 ±0.11 64.33 ±0.19 74.93 ±0.10 58.58 ±0.34 52.91 ±0.16

Table 4.3: Time and memory overhead of LD2 and baselines on large-scale datasets. “Learn”,
“Infer”, and “Mem.” respectively refer to minibatch learning and inference time (s) and peak
GPU memory (GB). Precomputation time is appended when applicable. “> 12h” means the
model requires more than 12h clock time to produce proper results. Respective results of the
first and second best performances among heterophilous models per metric are marked in bold
and underlined fonts.

Dataset
twitch-gamers pokec snap-patents wiki

Learn Infer Mem. Learn Infer Mem. Learn Infer Mem. Learn Infer Mem.

MLP 6.36 0.02 0.61 47.86 0.11 13.77 27.39 0.28 9.33 133.55 0.62 18.15

PPRGo 10.46+15.88 0.41 9.64 121.95+56.11 2.69 3.82 (> 12h) (> 12h)

SGC 0.09+0.74 0.01 0.28 1.05+8.08 0.01 0.28 4.94+23.54 0.01 0.42 12.66+7.98 0.01 0.52

GCNJK-GS 71.48 0.02∗ 7.33 27.33 0.09∗ 9.03 19.02 0.23∗ 9.21 95.52 0.69∗ 16.36

MixHop-GS 52.12 0.01∗ 1.49 71.35 0.03∗ 12.91 45.24 0.16∗ 19.58 84.22 0.23∗ 16.28

LINKX 10.99 0.19 2.35 28.77 0.33 9.03 39.80 0.22 21.53 180.71 1.14 14.53

LD2 (ours) 0.85+1.96 0.01 1.44 17.95+6.18 0.01 3.82 31.32+6.96 0.02 3.96 28.12+6.50 0.01 4.47

∗ Inference time of GSAINT sampling is not precise since they are conducted on induced subgraphs smaller than the raw
graph.

4.3.2 Performance Comparison

The main evaluations of LD2 and baselines on 8 large heterophilous datasets are presented

in Tables 4.2 and 4.3 for effectiveness and efficiency metrics, respectively. As an overview,

our model demonstrates its scalability in completing training and inference with fast

running time and efficient memory utilization, especially on large graphs. At the same

time, it achieves comparable or superior prediction accuracy against the state-of-the-art

minibatch heterophilous GNNs in most datasets.
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Time Efficiency. More specifically, compared to heterophilous benchmarks on the four

largest graphs with million-scale data, LD2 speeds up the minibatch training process by

3–15 times, with an acceptable precomputation cost. Its inference time is also consistently

below 0.1 seconds. The outstanding efficiency of LD2 is mainly attributed to the simple

model architecture that removes graph-scale operations while ensuring rapid convergence.

In contrast, the execution speeds of MixHop and LINKX are highly susceptible to node

and edge sizes, given their design dependency on the entire input graph. The extensive

parameter space also causes them to converge slower, necessitating relatively longer

training times. PPRGo shows limited scalability due to the costly post-transformation

propagation. The superiority of LD2 efficiency even holds when compared to simple

methods such as MLP and SGC, indicating that the model is favorable for incorporating

additional heterophilous information with no significant training overhead. The empirical

results affirm that LD2 exhibits optimized training and inference complexity at the same

level as simple models.

Memory Footprint. LD2 remarkably reduces run-time GPU memory consumption. As

the primary overhead only comprises the model parameters and batch representations, it

enables flexible configuration of the model size and batch size to facilitate powerful training.

Even for the largest graph wiki with n = 1.77M and F = 600, the footprint remains below

5GB under our hyperparameter settings. Other heterophilous GNNs, though adopting the

minibatch scheme, experience high memory requirements and even occasionally encounter

out-of-memory errors during experiments, as their space-intensive graph propagations

are executed on the GPU. Consequently, when the graph scales up, they can only be

applied with highly constrained model capacities to conserve space, potentially resulting

in compromised performance.

Test Accuracy. With regard to efficacy, LD2 achieves top testing accuracy on 6 out

of 8 heterophilous graphs and comparable performance on the remaining ones. It also

consistently outperforms the sampling-based GCNJK and MixHop, as well as conventional

GNNs. Particularly, by extracting embeddings from not only node features but pure

graph topology as well, LD2 obtains significant improvements over feature-based networks

on datasets such as squirrel, genius, and wiki, demonstrating the importance of pure

graph information in heterophilous learning. We deduce that the relatively suboptimal

accuracy on penn94 may be correlated with the difficulty of fitting one-hot encoding

56



Chapter 4. LD2

0 1 2 3 4 5 6
Train Time (s)

20

40

60

V
al

F
1

M
ic

ro
(%

)

MLP

PPRGo

SGC

MixHop

GCN-JK

LinkX

LD2

(a) squirrel

0 2 4 6 8 10 12 14
Train Time (s)

20

30

40

50

V
al

F
1

M
ic

ro
(%

)

MLP

PPRGo

SGC

MixHop

GCN-JK

LinkX

LD2

(b) arxiv-year

0 5 10 15 20 25
Train Time (s)

45

50

55

60

65

70

V
al

F
1

M
ic

ro
(%

)

MLP

PPRGo

SGC

MixHop

GCN-JK

LinkX

LD2

(c) twitch-gamers

0 5 10 15 20 25 30 35 40
Train Time (s)

40

50

60

70

80

V
al

F
1

M
ic

ro
(%

)

MLP

PPRGo

SGC

MixHop

GCN-JK

LinkX

LD2

(d) pokec

0 10 20 30 40 50 60
Train Time (s)

10

20

30

40

50

60

V
al

F
1

M
ic

ro
(%

)
MLP

SGC

MixHop

GCN-JK

LinkX

LD2

(e) snap-patents

0 20 40 60 80 100 120
Train Time (s)

10

20

30

40

50

60

V
al

F
1

M
ic

ro
(%

)

MLP

SGC

MixHop

GCN-JK

LinkX

LD2

(f) wiki

Figure 4.3: Validation accuracy convergence curves of minibatch LD2 and baseline models on
6 heterophilous datasets. Curves only represents the process of the training phase. Shaded area
is the result range of multiple runs.

features into informative embeddings. Consistent with the previous studies [42], regular

GNN baselines suffer from performance loss on most heterophilous graphs, while MLP

achieves comparably high accuracy when node attributes are discriminative enough. For

non-homophilous models GCNJK and MixHop, the minibatch scheme hinders them from

reaching higher results because of the neglect of their full-graph relationships.

Convergence Curve. To examine the effect of model and training settings, in Figure 4.3,

we display the model convergence curve, i.e. validation accuracy versus training time

on heterophilous datasets and minibatch models corresponding to Table 4.2. It can

be obviously observed that LD2 outperforms other baseline methods on most datasets,

demonstrating more stable curve, faster convergence, and significantly shorter overall

training time. It is worth noting that the convergence of some baselines is beyond the

display scopes in Figure 4.3.

Among other baselines, on small graphs, LINKX is relatively fast compared to GCNJK

and MixHop which generally take more time per epoch. However, its large parameter

space results in unstable performance, and hence requires more epochs to converge. When

the graph scales larger, the efficiency of LINKX degrades due to its full-graph dependency.

For simple and non-heterophilous models, though the decoupling design benefits them

for less epoch time, their accuracies are suboptimal, and hence experience more training

epochs than LD2. Particularly, the PPRGo model is so large that it overfits on validation

sets of small graphs such as squirrel.
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Figure 4.4: Effect of A2Prop propagation hops on the effectiveness of different adjacency and
feature embedding channels and their combinations on 6 heterophilous datasets.

4.3.3 Effect of Propagation Channels and Parameters

To gain deeper insights into the multi-channel embeddings of LD2, we specifically present

the results of learning on separate inputs in Figure 4.4, where we explore the range of

LP in [2, 4, 6, · · · , 20] for each each embeddings per dataset. To study the long-distance

information retrieval ability of our model, we also evaluate the effect on different embedding

combinations, such as PX,L2∥PX,H , PX = PX,0∥PX,L2∥PX,H , and PX∥PA. These partial

combinations are similarly input into the MLP for training following Eq. (4.2). Comparison

among different channel combinations is useful for studying the effect of each embedding

channel.

It can be observed that different graphs imply varying patterns when embedding channels

and propagation hops are changed. For the genius dataset where raw node attributes

already achieve an accuracy above 82%, applying the other two feature embeddings further

improves the result. While the adjacency embedding alone shows secondary performance,

integrating it with other channels proves beneficial. In comparison, on pokec, it is the

inverse embedding PX,H that becomes the key contributor, and larger hops produce better

results. Generally, as the graph scale increases, employing more propagation hops becomes

advantageous in capturing distant information. The effect of the inverse embedding

PX,H decreases when adding multiple hops in graphs such as genius, pokec, penn94, and

arxiv-year. However, on the small heterophilous graph squirrel, it reaches maximum when
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LP = 10, indicating that non-local inter-node relationships are beneficial in this case.

The observation supports our design that by adopting multi-channel and long-distance

embeddings, LD2 is powerful in capturing implicit information of various frequencies and

scales that is important in the presence of heterophily.

4.3.4 Case Study

In order to intuitively illustrate the effect of approximate propagation used in LD2, here

we consider a toy example. Figure 4.5 depicts a graph with 9 nodes and 10 edges. Its

nodes belong to 3 classes, and the connections are mostly heterophilous.

Figure 4.5: An example heterophilous graph where Hn,1 = 0.204.

We specifically focus on the inverse Laplacian propagation PX,H = 1
LP,H

∑LP,H

l=1 L̃lX, as

the 2-hop propagation is not suitable for such a small graph.

We first consider the F = 3 feature distribution with values in [−1, 0, 1] as shown in the

left side of Figure 4.6. Nodes inside the same class are of the same value in each feature
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Figure 4.6: Progression of inverse Laplacian embedding with increasing propagation hops on
given positive-negative distribution raw feature.
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dimension. We then perform l = 1 to 8 times of propagation and illustrate the embedding

in the figure. It can be interpreted that the propagation is useful in assigning inverse

values to neighboring nodes based on the current ego node embedding. When the number

of hops increases, the embedding gradually converges in each feature dimension. It is

intuitive in the figure that, with proper steps of propagation, such as l = 3 or 4, it is easy

to distinguish nodes in different classes, that their embeddings show different patterns.

The Laplacian propagation procedure is hence useful for classifying heterophilous nodes

in this case.

In another example, we investigate the one-hot style node feature, where nodes in the

same class are assigned with 1 for one feature, and 0 for others. No negative value exists in

the raw feature. In this case, the embedding produced by Laplacian propagation quickly

converges. When setting l = 3 or 4, it is difficult to distinguish class 0 and 2, since all their

nodes exhibit a similar pattern of having negative values in feature dimension F = 0, 2

and positive values in F = 1.

The example illustrates the propagation procedure of the heterophilous filter. We intend

to use the case study to explain the difficulty of LD2 adapting to certain patterns of

input features, such as one-hot encoding. We believe this is partially the reason that LD2

with only feature embeddings achieves suboptimal accuracy on graphs with such one-hot

features including squirrel and penn94.
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Figure 4.7: Progression of inverse Laplacian embedding with increasing propagation hops on
given one-hot distribution raw feature.
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4.4 Summary and Discussion

In this work, we propose LD2, a scalable GNN for heterophilous graphs, which leverages

long-distance propagation to capture non-local relationships among nodes, and incor-

porates low-dimensional yet expressive embeddings for effective learning. The model

decouples full-graph dependency from iterative training, and adopts an efficient precompu-

tation algorithm for approximating multi-channel embeddings. Theoretical and empirical

evidence demonstrates its optimized training characteristics, including time efficiency

with complexity linear to O(n), and GPU memory independence from the graph size n

and m. As a noteworthy result, LD2 successfully applies to million-scale datasets under

heterophily, with learning times as short as 1 minute and GPU memory expense below

5GB.

In the experiments, we observe that LD2 exhibits varying performance on graphs with

different types of features.In Figure 4.4 we display the effects of these feature embed-

dings when changing propagation steps, and in Section 4.3.4 we examine a toy model

attempting to explain the reason behind the varying propagations. We think that the

propagation of LD2 may be less effective for generating expressive embeddings from certain

types of features. As mentioned in Section 4.2.4, the complexity of our precomputation

algorithm A2Prop is O(LPmF ). The evidence indicates that the efficiency bottleneck of

the precomputation lies in the linear dependency on the graph and feature size in the

algorithm.

Given these current limitations, we believe that efforts towards more robust precom-

putation schemes and better adaptability to diverse features could further enhance the

non-homophilous model in the future. Although the A2Prop is efficient in implementation,

we do recognize that there are graph centrality algorithms and decoupled GNN precom-

putations reaching sub-linear complexity. A2Prop is potentially configurable for these

enhancements. Secondly, various data augmentation approaches are able to transfer the

one-hot features to other feature distributions, for instance, by using an embedding model

or a simple MLP. Applying LD2 to propagate the augmented embeddings is a promising

way to address its limitation on feature distribution.
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Conclusion and Future Works

5.1 Conclusion

Recent advances in data processing have stimulated the demand for learning graphs of

very large scales. GNNs, being an emerging and powerful approach in solving graph

learning tasks, are known to be difficult to scale up. In this work, we present the current

progress and result of our efforts towards scaling up GNNs to large graph.

A literature review is firstly conducted in Chapter 2, where we start from the basic design

of vanilla GNN architectures, and perform a thorough analysis on the complexity and

computation bottleneck of such design. Then, we subsequently review various existing

approaches on improving the GNN efficiency and scalability, introducing the sampling and

decoupling techniques. Lastly, we investigate the scalability issue on heterophilous graphs.

In Chapter 3, we notice that most scalable models apply node-based techniques in

simplifying the expensive graph message-passing propagation procedure of GNNs. However,

we find such acceleration insufficient when applied to million- or even billion-scale graphs.

Our solution to the bottleneck is SCARA, a scalable GNN with decoupling propagation

and feature-oriented optimization. By integrating advanced graph management techniques,

we propose the precomputation algorithms Feature-Push and Feature-Reuse, which

is decoupled with the scale of graph node size and employs efficient computation from

the feature perspective. We perform theoretical analysis to derive the precision guarantee

as well as the sub-linear complexity of SCARA. Comprehensive empirical evaluations
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demonstrate the significant improvement of SCARA learning time compared to state-of-

the-art models, while it is also superior with fast inference speed, small memory overhead,

and comparable or improved accuracy. We also discuss the effect of parameters and

different algorithmic settings in detail.

In Chapter 4, we especially investigate the heterophilous graphs. We discover that most

existing heterophilous models incorporate iterative full-graph computations to capture

node relationships. These approaches have limited application to large-scale graphs due

to their high computational costs and challenges in adopting minibatch schemes. To

address the problem, we propose LD2, a scalable GNN model for heterophilous graphs with

Low-Dimension embeddings and Long-Distance aggregation. We introduce the decoupling

scheme to non-homophilous settings with augmentations such as multi-channel embeddings

and multi-hop propagations. Based on the complexity analysis, we subsequently design

embeddings for effectively representing pure topology and node attribute data under

heterophily. The A2Prop precomputation algorithm is derived with vector-wise precision

guarantee as well as adaptability to the multiple heterophilous embeddings. To evaluate

the model effect, we conduct experiments compared to other minibatch baselines on 8

large heterophilous datasets, and show that the model is capable for realize impressive

speed and memory optimization while achieving good accuracy. Parameter exploration

and case study are performed to further validate the effectiveness of our design.

5.2 Future Works

5.2.1 Scaling Up a Broader Range of Models

As demonstrated in Chapters 3 and 4, by integrating scalable techniques and simple

GNN models, we significantly improve the efficiency performance of decoupled models

on common, i.e. homophilous, graphs as well as heterophilous variants. Our analysis

also indicates that the ability of pre-propogation models may be constrained by certain

inherent limitations, such as difficulties in generality and flexibility. Nonetheless, we do

note that our current approaches may still be applicable when introduced to a more

general range of GNN architectures. We here list two potential candidates.
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The iterative- and post-propagation GNNs under the message passing framework are

still widely used today [20, 25]. As these models execute more propagation operations

during training and inference, their performance are more sensitive to the propagation

efficiency. Currently, most of these models follow the naive matrix multiplication as graph

propagation. However, as we have shown in Chapter 3, such calculation can be effectively

approximated without affecting eventual accuracy. In addition, a precision guarantee

can be provided by exploiting the random walk scheme. Hence, introducing approximate

propagation to iterative- and post-propagation architectures is a promising direction to

widen the application scenario of our techniques while benefiting the scalability of more

mainstream GNN models.

Another popular type of scalable solutions rely on the sampling scheme, since they can be

easily fit to a wide range of GNN models and applications without heavy modification.

We notice that few advanced graph algorithms with favorable scalability properties have

been applied in the GNN operations [57]. We are thence motivated in introducing graph

partitioning algorithms such as [87] to further optimize the sampling process with higher

efficiency and better usage of graph information. For example, by incorporating methods

efficiently finding subgraphs based on node connectivity and neighboring information,

computational expensive models such as GAT [20, 58] and Graph Transformer [88, 89]

may be alleviated and achieve better scalability.

5.2.2 Benchmarking GNN Scalability and Efficiency

Several existing papers survey the GNN performance by evaluating on corresponding

benchmarks [72, 90–92]. However, most of these works focus on the efficacy of GNN

models, and the efficiency aspect is often overlooked. As recent research stresses more

on the importance of GNN scalability, it becomes challenging to balance the efficiency

while maintaining model performance. Reviews suggest that the gains of scalability may

come with the price of corrupting graph completeness and losing training information

[9, 93]. Hence it is a meaningful task of evaluating GNNs based on both effectiveness and

efficiency at the same time.

One possible research direction lies in the robustness of GNN learning. Researchers reveal

that neural networks have certain robustness against random noise [94]. In the case of
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GNN, the performance of trained models is marginally affected by graph perturbation such

as nodes or edges changes [63, 64]. In other words, there is a possibility that some graph

operations can be less precise, while the potential of neural networks can be exploited

without greatly sacrificing GNN accuracy, as the approximate propagation we shown

in Chapters 3 and 4. Performing quantitative evaluation on such property enlightens a

possible path to GNN design that is both effective and efficient, which will be of great

interest to the community.

5.2.3 Exploring Scalable GNN on Graph Variants

In Chapter 4 we address the scalability issue by introducing the decoupled model to

heterophilous data, which is a category of graphs attracting attentions in recent years.

There are, however, a much wider range of graphs classified as different variants, such as

heterogeneous graphs and dynamic graphs. Studies towards scaling up these graphs are

also welcomed by applications based on these variants.

There are few studies focusing on GNN training on dynamic graphs. A related category

is Spatial-Temporal GNNs (STGNNs) that learn node attributes and dependencies with

sequential inputs changing dynamically over time [95]. The general thought of STGNNs is

to aggregate spatial information with basic GNNs layers, and extract temporal sequences

with RNN structures simultaneously. However, these works often cannot achieve desired

performance in an online fashion, as they are based on classic GNNs that are known to

have a high training cost. A very recent paper [96] introduces the decoupled model into

dynamic graphs, paving new possibility of enhancing scalability of GNNs on these types

of graphs.
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