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Abstract
Graph Neural Network (GNN) is a successful marriage of graph
data management and deep learning, leading to notable improve-
ments in learning quality over graphs. This advancement highly
impacts graph-based applications in many areas, including com-
puter vision, natural language processing, biology, medication, and
social science. Despite the success, scaling up GNN models poses a
formidable and long-lasting challenge, hindering the application to
industrial-level graphs featuring millions or billions of nodes and
edges. The rapid update of tasks and models requires continuous
e!orts in developing scalable GNN architectures. In speci"c, the
scalability bottleneck of GNNs typically stem from graph-related
computations, entailing more pro"cient processing and utilization
of the unstructured graph data.

There has been a marked trend of incorporation between GNN
and data management to tackle newly-emerged scalability chal-
lenges. This includes the utilization of graph algorithms such as
Personalized PageRank (PPR) and subgraph discovery in GNN mod-
els, as well as exploring topics in graph domain including multi-
scale representation and graph spectrum. This primer tutorial (3
hours) aims to provide a comprehensive overview of scalable GNN
designs, highlighting the most recent and prominent models that
focus on the scalability issue. We will also summarize the technical
challenges and suggest potential future directions regarding the
rapid developments in this "eld. We believe that this work can be
used as one important reference for researchers looking to develop
scalable GNN models.

CCS Concepts
• Mathematics of computing → Graph algorithms; • Com-
puting methodologies → Neural networks; Learning latent
representations.
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1 Introduction
Recent years have witnessed the burgeoning of graph-based appli-
cations, such as viral marketing in social graphs, recommendation
in e-commerce networks, drug discovery based on molecule net-
works, route planning in tra#c road networks, as well as aiding
large language model (LLM) deployment. In the trend of learn-
ing over complex graph data, graph neural networks emerge as a
kind of neural network specialized in graph processing, and have
demonstrated excellent learning performance in fundamental graph
understanding tasks such as node classi"cation and link prediction.

The canonical GNN design features the integration of graph
processing and neural network learning, empowering the model
with the capability to learn not only from the entity information
of isolated nodes, but also from their relationships presented by
the graph topology. This unique architecture brings promising
model performance, but also results in critical data scalability issues
with the graph-related operations identi"ed as the bottleneck. The
classical GNN model is known to be computationally expensive
due to the consideration of the connection between data samples,
where representing a single node relies on the representation of
its neighbors. Such node dependency leads to graph-scale model
computation, and iterating the network with multiple layers inten-
si"es the scalability problem, which is recognized as neighborhood
explosion. Recent development also raises new challenges for de-
signing and applying GNNs to broader missions, demanding more
comprehensive model ability while maintaining scalability. The
emerging graph data and complicated tasks often leads to more
sophisticated model designs, which, in turn, are more susceptible
to scalability issues in graph computations.

However, there is an increasing popularity of performing learn-
ing tasks over large graphs with at least millions of nodes, such
as Papers100M and Microsoft Academic Graph. Due to the huge
data scale and relatively limited computation resources, especially
GPU memory, training GNNs can easily lead to out-of-memory
issues or impractical training times [39, 40, 57]. Moreover, looking
ahead, there is a foreseeable increase in the size of data generated by
graph-based online services like WeChat, Amazon, and Facebook.
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Figure 1: Overview of this tutorial. For each category of scalable GNN designs and models, we list corresponding scalability
challenges they attempt to address.

To this end, integrating data management techniques into GNNs
is considered a promising solution for addressing the scalability
issue. Graph algorithms have been extensively studied by the data
management community, advancing runtime performance, e#-
ciency, and scalability. Pioneered by the classic APPNP [18], which
substitutes the iterative graph convolution in GNN with approxi-
mate PPR computation to alleviate computational overhead, studies
have been nourished by introducing a spectrum of ideas from the
graph data management domain to remarkably address the graph
processing bottleneck in GNN computation. For example, "ltering
algorithms from graph spectral theory extend GNN’s capability in
processing complex graph signals and inspire a family of model
designs known as spectral GNNs. Canonical pairwise similarity
metrics are also proved to be useful for querying important under-
lying patterns to aid model learning. Looking ahead, the emerging
challenges and various application scenarios of GNNs present a
broad range of opportunities for applying di!erent graph data man-
agement techniques, as we attempt to convey in this tutorial.

Related recent tutorials. Due to the rapid growth in the realm of
GNNs, a few tutorials have covered the fundamental concepts and
speci"c topics of graph learning with GNNs. [51] introduces the
basic concepts and common approaches in applying large-scale
GNNs from the perspective of neural network design. [9] and [4]
covers the dynamic and spectral variants of GNNs, respectively. [41]
focuses on the system-level optimizations used for GNN training.

From the graph perspective, [8, 54] review subgraph-related tasks
with respective focuses on large graphs and learning algorithms,
while [35, 37] are for the graph query problem. [5, 17, 19, 50] cover
the broader topic regarding the integration between data manage-
ment and machine learning, i.e. DB4AI.

This tutorial particularly highlights the graph data management
aspect in designing GNNs, presenting the latest advances of chal-
lenges and solutions for modern scalable GNNs. We identify and
categorize di!erent schemas of integrating the formulated graph
analytics and editing techniques into the pipeline of GNN learning.

2 Target Audience and Length
Tutorial overview. In this tutorial, we aim to establish an intriguing
view that the GNN scalability issue is highly related to techniques
in graph data management. We provide a comprehensive review re-
garding recent utilization of graph data management techniques in
scalable GNNs. We especially divide them into graph analytics and
editing techniques with respective focuses on retrieving and editing
the graph data, and categorize the relevant studies accordingly.

We plan the 3-hour tutorial to be conducted based on the
following sessions:
• Section 3.1 Introduction of Scalable GNNs (40 mins)

3.1.1 Concepts and Applications of Scalable GNNs (5 mins)
3.1.2 Classic Scalable GNNs (25 mins)
3.1.3 Evaluation and Challenges of Scalable GNNs (5 mins)
3.1.4 Opportunities for Graph Data Management (5 mins)

• Section 3.2 Graph Analytics and Querying (45 mins)
3.2.1 Spectral Embeddings (15 mins)
3.2.2 Node-pair Similarity (15 mins)
3.2.3 Graph Algebras (15 mins)

• Section 3.3 Graph Editing (60 mins)
3.3.1 Graph Sparsi"cation (15 mins)
3.3.2 Graph Sampling (15 mins)
3.3.3 Subgraph Extraction (15 mins)
3.3.4 Graph Coarsening (15 mins)

• Section 3.4 Future Directions (20 mins)
3.4.1 Scalable Large Models with Graphs (10 mins)
3.4.2 Learning Data E#ciency and Elasticity (5 mins)
3.4.3 Scalable Training Schemes and Systems (5 mins)

Target audience. The tutorial is designed for researchers and prac-
titioners who are with basic graph knowledge, and are interested
in graph data management and GNN techniques. The topic of this
tutorial intersects with the recent trend of DB for AI. By attending
the tutorial, the audience is expected to learn about the prevailing
methodologies in scalable GNNs, and the intersection of leveraging
graph data management techniques to enhance GNN performance.
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3 Tutorial Outline
3.1 Introduction of Scalable GNNs
3.1.1 Concepts and Applications of Scalable GNNs. In this
part, we will brie$y introduce the general concepts and typical
tasks of GNNs. A canonical graph neural network operates in a
message-passing manner, iteratively performing propagation based
on graph topology and feature updates based on learnable weights.
The introduction of graph data, however, becomes the scalability
bottleneck due to the irregular data structure, which is relatively
ine#cient within the computation on specialized devices such as
GPU. The scalable GNN is regarded as a family of model designs
highlighting capability in processing large graphs, typically by
reducing time and memory overhead during training and inference.
Compared to GNNs focusing on e#cacy, these designs prioritize
enhancements in e#ciency and scalability, usually orienting the
management of graph data.

GNNs demonstrate unique capability in processing complicated
graph patterns with typical graph understanding tasks such as node
classi"cation, link prediction, and graph regression. The enhanced
scalability enables their application in real-world scale of data such
as knowledge graph retrieval, social network analysis, e-commerce
recommendation, and road network forecast.

3.1.2 Classic Scalable GNNs. In this part, we will elaborate
on the design goals and representative works regarding classic
approaches to improving GNN scalability in more detail. A general
goal of classic scalable GNNs is to reduce or shift the computational
overhead of graph operations so that the critical GPU memory
bottleneck can be addressed by performing mini-batch training. By
examining the techniques used in handling graph data, we introduce
the following approaches:
• Graph Partition: Due to constraint of GPU memory when load-
ing large-scale graph data, a common model-agnostic solution is
employing graph partition algorithms to divide the graph into
smaller subgraphs. The approach is especially suitable for dis-
tributed learning, where subgraphs are allocated to multiple de-
vices for training. Both classic partition techniques based on
graph topology and those tailored for GNNs are utilized, and
algorithmic goals include optimizing computational and commu-
nication overhead.

• Graph Sampling: Data sampling is one of the classical ap-
proaches for addressing the scalability issue in machine learning.
Graph sampling implies randomly selecting speci"c graph nodes
and edges according to certain metrics, and forming them as
batches to learn during training iterations. Based on the scope of
sample selection, strategies can be categorized into node-, layer-,
and subgraph-level [32]. While the sampling strategy reduces
computational overhead through learning, the iterative process
ensures statistically similar learning outcomes.

• Decoupled Graph Propagation: As graph propagation and fea-
ture transformation entail di!erent computational requirements,
the idea of decoupled GNN emerges to separate them apart. The
implication of decoupling strategy is that, messages generated
through graph propagation can be disentangled from layer-by-
layer updates and instead learned in an aggregated fashion. By
this means, graph operations can be conducted with dedicated

algorithmic and device optimizations, which addresses the scala-
bility bottleneck while retaining model capability.

3.1.3 Evaluation and Challenges in Scalable GNNs. From
the perspective of data management, there are di!erent speci"c
goals in the process of designing and applying GNNs to large-scale
graphs, ranging from directly tackling the time and memory e#-
ciency to pursuing better graph processing outcomes. Hence, beside
comparing prediction accuracy, recent studies extend the evalu-
ation of GNNs in di!erent aspects. For instance, [7, 34, 36] o!er
comprehensive observation regarding large-scale GNN learning
with a collection of acceleration techniques. [23] performs empiri-
cal assessment on the e#ciency and "ne-grained performance of
decoupled models.

Corresponding to the design goals and empirical observations,
the scalability issue of GNNs can be elaborated in di!erent perspec-
tives. We speci"cally identify the following challenges under the
topic of scalable GNNs:
• Neighborhood Explosion: The intensive scale of neighbor-
hoods in multi-layer model learning is a persistent issue hinder-
ing GNN time complexity and empirical performance. Various
graph processing techniques have been proposed on the topic of
how to conduct the graph-scale computation e#ciently without
losing graph information.

• Limited Memory: The realistic graphs also poses practical chal-
lenges in storing and maintaining the large amount of data, es-
pecially in the highly-constrained GPU memory. Therefore, an
array of scalable GNNs explores e#cient management of the data
by reducing or shifting the memory overhead.

• Multi-scale: The graph property of heterophily is revealed to be
dominant in tasks such as anomaly detection. In this case, nodes
are connected with dissimilar neighbors, while conventional
GNNs face di#culties due to their concentration on graph locality.
Multi-scale GNNs mitigate the issue by supplementing non-local
graph information. However, it comes into con$ict with common
scalable designs that tend to diminish global dependency. How
to provide multi-scale ability to scalable GNN models is thus a
challenging topic.

• Fine-grained: While scalable GNNs are designed to retrieve
information from a large amount of data, it is uncovered that
their prediction accuracy decreases on certain graph nodes. Fine-
grained operations are useful for elevating attention on speci"c
nodes or personalizing graph propagations. As the manipulation
easily incurs additional time and memory overhead, it also entails
novel scalable solutions to adapt these particular managements.

3.1.4 Opportunities for Graph Data Management. The clas-
sic scalable GNN approaches present various opportunities for inte-
grating graph data management techniques into the GNN pipeline.
For example, di!erent graph partitioning algorithms can be em-
ployed to minimize and balance computation and communication;
graph centrality metrics can be utilized to measure the importance
of components for sampling; embedding algorithms are favored
by the decoupled design for su#ciently representing the topology
information. Based on the operations on graph data, we generally
categorize promising graph data management techniques used for
scalable GNNs into the following two types:
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• Graph Analytics and Querying: These approaches does not
directly change the graph data, but rather exploit the graph topol-
ogy for augmenting GNN learning with enhanced e#ciency and
favorable e!ectiveness. Typically, this implies analyzing or query-
ing graph information on graph, subgraph, or node level, and
then using the results for model learning.

• Graph Editing: This family of techniques choose to modify the
graph structure during the GNN learning pipeline for reducing
the data scale, ranging from the traditional graph-based modi-
"cations such as sparsi"cation and sampling, to GNN-tailored
methods of coarsening and condensation.
Target. In this section, audience will be familiar with the basic

concepts and pipelines of scalable GNNs, and will learn the recent
advances regarding the scalability challenges and opportunities of
applying graph data management techniques.

3.2 Graph Analytics and Querying
Since the canonical GNN design exhibits a resource-intensive archi-
tecture integrating graph and neural network computation, many
studies seek to employ powerful graph processing techniques al-
ternative to graph convolution to better retrieve and exploit graph
data. Typically, by employing advanced graph data management
algorithms, these techniques can shift the computational overhead
from full-scale graph processing during iterative network training
and enhance the e#ciency of the overall GNN pipeline.

3.2.1 Spectral Embeddings. GNNs are known to be tightly rele-
vant to spectral graph "ltering, which o!ers a compact pipeline for
applying graph transformations [4]. However, the complex graph
patterns in di!erent scenarios call for speci"c solutions to better
adapt the spectral signals and generate embeddings. The following
works mark the recent advances in embedding spectral information
for scalable GNN learning.
• Combined Embeddings: LD2 [24] investigates the scalability
issue of spectral "ltering under heterophily. It adopts multiple
"lters and decoupled architecture to capture multi-scale infor-
mation of heterophilous graphs. By this means, whole-graph in-
formation is su#ciently embedded, while the model still enjoys
simple mini-batch training. The multi-scale spectral embeddings
can also be extended to edge-wise learning [45–47].

• Adaptive Basis: UniFilter [15] devises a universal "lter span-
ning across di!erent heterophilous graph patterns. The "lter
design is found to e!ectively alleviate the common $aws of over-
smoothing and over-squashing in GNN convolutions without
compromising e#ciency. AdaptKry [13] further designs an adap-
tive "lter with provable controllability for diverse heterophily
levels. Despite its spectral expressiveness, it can be achieved by
a polynomial expression with favorable complexity.

3.2.2 Node-pair Similarity. Graph metrics representing node-
pair relationships are useful in discovering underlying relevance in
the graph topology, especially long-distance ones. Notably, these
metrics showcase a practical pipeline for querying node-level in-
formation on demand instead of the full-graph manner.
• Topology Similarity: SIMGA [28] utilizes top-𝐿 SimRank to
recognize and mitigate graph heterophily through structural sim-
ilarity. It demonstrates that themetric is su#ce in discovering and

aggregating global similarity with a decoupled precomputation
of sublinear overhead. DHGR [3] measures node-pair correlation
by the cosine similarity of both topology and attributes, then
employs a rewiring process to augment multi-scale edges and
enhance performance under heterophily. Its design is feasible to
subgraph-based batch training and hence maintains scalability.

• Hub Labeling: CFGNN [16] employs the hub labeling approach
to discover underlying hierarchy in the graph topology and per-
forms distinctive convolutions for core nodes in the hierarchy.
DHIL-GT [27] explores the utilization of hub labeling for het-
erophilous node-pair rewiring and fast shortest path distance
(SPD) bias querying in graph Transformer learning.

3.2.3 Graph Algebras. Instead of explicitly using graph infor-
mation for network learning, implicit GNNs [12] replace the con-
ventional GNN message-passing scheme by an algebraic expression
involving the graph matrix. They acquire node representations by
solving the equilibrium, thus capturing full-graph information in
a single layer and bypassing the limited receptive "eld of general
graph convolution. On top of their multi-scale nature, the following
works aim to address various scalability issues
• Matrix Decomposition: EIGNN [31] introduces an e#cient
implicit calculation by considering a decoupled architecture. Its
forward inference for the "xed-point equation can thus be di-
rectly acquired without iterative solvers, which enjoys better
convergence and e#ciency. It also employs eigendecomposition
to simplify the large matrix computation.

• Approximate Iteration:MGNNI [30] looks into the multi-scale
robustness and alleviates the sensitivity loss between distant
nodes. It adopts a multi-hop graph adjacency in the aggregation
equation, and hence directly expands the receptive "eld without
occurring signi"cant additional overhead in solving the implicit
equation.

• Graph Simpli!cation: SEIGNN [29] focuses on the training
scalability in applying implicit GNNs to large graphs. To deploy
mini-batch training, it introduces a graph coarsening approach
that divides the graph into subgraphs while maintaining inter-
subgraph propagation through linked coarse nodes. Batches are
generated from the graph with additional coarse nodes.

Target. In this section, audience will be familiar with promising
graph analytics and querying techniques used in scalable GNN
variants. They will learn about di!erent approaches of integrating
graph data management techniques for augmenting graph learning
and addressing the scalability challenges.

3.3 Graph Editing
Another array of studies mitigates the graph-scale bottleneck by
applying speci"c procedures to edit the graph structure and re-
duce data size. The scalability is enhanced since the computation
graph during learning is smaller. In the meantime, common GNN
architectures can still be employed to leverage their capability.
Nonetheless, how to design graph processing schemes to prevent
information loss and performance degradation is always a key chal-
lenge for these models. In this section, we cover the mainstream
graph editing techniques including graph sparsi"cation, sampling,
and condensation.
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3.3.1 Graph Sparsification. Graph sparsi"cation reduces the
scale of data by removing edges in the graph based on certain cri-
teria while preserving important properties such as node identity.
The technique is especially useful for considering "ne-grained prop-
erties by eliminating unimportant edges. On the e!ectiveness side,
this is helpful to eliminate unwanted connections being harmful
to the model prediction. Regarding e#ciency, it also decrease the
amount of operation in graph propagation.
• Node-level: SCARA [26] looks into the feature-wise similarity of
the decoupled computation, which can be transformed into PPR
calculation through re-normalization. This enables "ne-grained
node propagation and feature-oriented parallel computation, as
well as scalability supported by layer-agnostic sublinear complex-
ity. Unifews [25] formulates the layer-dependent propagation
as spectral sparsi"cation with approximation bounds of both
iterative and decoupled architectures. The edge pruning scheme
provides personalized maneuver while prevents additional com-
putation overhead.

• Layer-level: NIGCN [14] achieves node- and layer-dependent
propagation by controlling individual weight parameter during
summation. It employs e#cient neighbor sampling technique to
approximate the decoupled embedding with linear complexity.
ATP [20] discovers that the propagation performance is related
with the node degree. It designs an augmented propagation by
distinguishing nodes of high and low degrees. To invoke multi-
scale representation, an additional encoding scheme based on
embedding computations is utilized to represent node identity,
local, and global information.

• Subgraph-level: GAMLP [56] establishes the attention mech-
anism to allocate node-wise importance in multi-scale embed-
dings. The learnable propagation and MLP network transfor-
mation are decoupled and respectively trained as an attempt to
alleviate overhead of intermediate results. NAI [10] examines
applying personalized design to various decoupled architectures.
The propagation optimization acts as an external gated model for
truncating the node-wise feature propagation. It further reduces
the overhead of incorporating multi-scale feature embeddings
through knowledge distillation.

3.3.2 Graph Sampling. Sampling remains a proli"c topic in scal-
able GNNs thanks to its simplicity in reducing graph size by varied
graph-related techniques while assuring model capability. Built
on preceding algorithms, the following works target drawbacks of
existing methods and tackle new challenges including sampling
expressiveness, procedural overhead, and theoretical guarantee.
• Graph Expressiveness: ADGNN [43] proposes a set of strate-
gies to computation and communication cost in distributed sce-
narios by de"ning corresponding node importance. Theoretical
derivations are given to bound the aggregation di!erence be-
tween sampled and full topology. PyGNN [11] alternatively con-
siders subgraphs with speci"c frequency ranges and conducts
distinctive learning in spectral domain. Signals are then merged
to form a dedicated and multi-scale representation of the graph.

• Graph Variance: LABOR [2] considers the stability and opti-
mality in complex scenarios such as multi-layer and nonlinear
layer-level sampling. It takes the advantage of node-dependent

neighbor sampling, which restrains variance while requiring less
samples. HDSGNN [21] aims to minimize the variance caused
by sampling to ensure training convergence and e!ectiveness. It
interpolates graph sampling into an optimization process, where
the cached sampling results are included to generate the incre-
mental graph components. LMC [42] enhances the ability of
subgraph-level sampling by extended gradient computation and
error compensation.

• Device Acceleration: GIDS [1] speci"cally accelerates the CPU-
GPU loading process for GNN sampling and aggregation. Neu-
tronOrch [38] actively balance the workload of CPU-based sam-
pling and GPU-based training, as an attempt to e!ectively lever-
ages the computation and memory resources. DAHA [22] si-
multaneously utilizes CPU and GPU for sampling and training,
exploiting a cost model for adaptive execution planning.

3.3.3 Subgraph Extraction. Extracting subgraphs as one-time
sparsi"cation or iterative sampling can be costly in scalable GNN
pipelines. Moreover, representative subgraphs bene"t "ne-grained
GNN expressiveness since they introduce stronger local topology.
Hence, there are studies dedicated to optimizing the process of
e#ciently managing subgraphs for downstream GNN learning.
• Subgraph Generation: G3 [44] investigates the subgraph gen-
erating and transferring behavior in distributed settings. Its sam-
pling phase in the pipeline is able to seamlessly extract and dis-
tribute the subgraphs without occupying excessive GPU memory.
TIGER [48] progressively gathers required triples by similarity
matching on heterogeneous knowledge graphs.

• Subgraph Storage: SUREL [53] and its following work [52] em-
ploys algorithm and system co-design as a holistic framework,
including extracting subgraphs by sampling and storing sub-
graphs as sparse representation. GENTI [55] further designs data
structure specialized for streaming graph data, alleviating the
blockage in GPU training.

3.3.4 Graph Coarsening. Coarsening describes another simpli-
"cation approach that reduces the graph size by contracting nodes
into subsets. It hence results in a di!erent graph with its own node
and edge sets, while still sharing similarities with the original graph.
The scale of the coarse graph is usually signi"cantly smaller, so
that the GNN model can learn on the coarse graph with reduced
time and memory overhead.
• Structure-based: GDEM [33] explores the graph spectrum in
generating and training condensed graphs. It transforms the
eigenbasis matching objective into an iterative constrained opti-
mization process and ensures GNNs learns the approximate spec-
trum from the synthetic graph. ConvMatch [6] further approx-
imates the process of generating supernodes through bounded
node-pair representations, which enhances scalability on larger
original graphs.

• Spectral-based: GC-SNTK [49] examines the e#ciency and scal-
ability issue in the bi-level optimization of structural conden-
sation, alternatively formulating it as a kernel ridge regression
task. The computational complexity is reduced thanks to less
iterations in training the model.
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Target. In this section, audience will be familiar with advances
of the graph editing techniques in scalable GNNs. They will learn
about di!erent schemes of e#ciently managing graph data to re-
duce graph scales and enable scalable computation.

3.4 Future Directions
3.4.1 Scalable Large Models with Graphs. With the recent
advances in graph learning, a compelling task is to apply scalable
graph data management techniques to a broader range of models.
Large language models (LLMs) have been integrated into the
graph learning pipeline for their power in task understanding and
generalization. However, it comes at the price of e#ciency and
scalability, as the expense of LLM intensi"es exponentially with
the graph scale. We show that there are a number of opportuni-
ties of graph data management towards more scalable large graph
models. For example, LLM on graph tasks requires informative
and e#cient embedding of the graph data by GNN or other graph
embedding models, which is also a two-phase decoupled process
and can be enhanced by graph analytics methods. The graph with
retrieval-augmented generation (GraphRAG) pipeline oper-
ates knowledge graphs to provides semantic information in LLM
inference. However, its dependence on community detection and
querying algorithms becomes the critical e#ciency bottleneck for
deploying the technique at scale and therefore calls for calls for
more pro"cient enhancements.

Graph Transformer is also an emerging GNN architecture that
learns graph topology as sequence, which di!ers from convolution-
based models and has become the backbone model for many graph-
relevant large models. Due to the architectural di!erence, these
models exhibit dissimilar graph scalability issues and requires dedi-
cated optimizations. Graph data management techniques for e#-
ciently querying and representing sequential information are hence
particularly suitable to be incorporated.

3.4.2 Learning Data E!iciency and Elasticity. While canoni-
cal GNNs assume simple and labeled graphs to perform learning,
the realistic conditions are more complicated and put forward new
requirements for designing proper scalable GNNs. One of the is-
sues is insu"cient labels, that it is common for available data
to lack ground-truth labels in real-world graph learning applica-
tions, especially for large-scale graphs. Certain graph processing
and model embedding strategies are uniquely useful in these chal-
lenging scenarios. For example, in self-supervised tasks, scalable
graph computation for contrastive learning is promising to o!er
e#cient graph information retrieval. It is also bene"cial to explore
other integrations of scalable GNNs, such as few-shot learning for
semi-supervised settings.

Dynamic graphs, characterized by changes in topology, pose a
challenge for many GNN designs due to the additional temporal
dimension. While a number of practical techniques have been pro-
posed for handling sequential data in both graph management and
neural network regimes, it deserves further investigation of how
these algorithms can integrate and accommodate the paradigm of
scalable GNNs.

3.4.3 Scalable Training Schemes and Systems. For a wide
range of emerging scalable GNNs, enhancements at the system
level are largely under-explored. Device-speci!c optimization is

useful for allocating proper workload to particular devices such as
GPU and TPU according to themodel design, which heavily impacts
the realistic execution performance. Distributed training also fea-
tures a large scope of learning systems harnessing data and model
parallelism, where e!orts are demanded for migrating scalable data
processing and network designs into these environments.

Target. In this section, the audience will receive an overview of
the promising directions and open questions regarding the topic of
scalable graph learning and the application of graph data manage-
ment techniques from model, data, and system levels. The tutorial
will conclude with a summary of the approaches on the integration
of graph data management techniques and scalable GNNs covered
in this talk.
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