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GNN: Current and Prospect
Introduction

Ranking in keywords of accepted papers

#1 WWW 
2024 #4 NeurIPS 

2025 #7 ICLR 
2024

Percentage of topic in accepted papers

7% VLDB 
2024 6% ICDE 

2025 5% SIGMOD 
2025 
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GNN: Learning on Graph Data
Introduction

Layer 1 Layer 2 …

Graph Space
o Non-Euclidean
o Dedicated storage formats

Embedding Space
o Organized
o Stored in matrices
o Suitable for GPU computation

• Integrate graph computation and neural network architecture

• From semi-unstructured graph data to structured embeddings

Graph
Data

Neural Network

Prediction

Forward Passing Backward Propagation



GNN: Learning on Graph Data
Introduction

Graph
Data

Neural 
Network

Full-batch (FB) Training Mini-batch (MB) Training

Data Batches

Neural 
Network

Raw Graph

Forward Passing Backward Propagation

• NN learns graph data as a whole

• Preserve full graph information

• NN learns part of graph each time

• Batch division affects performance



GNN: GCN [ICLR’17]

• Message Passing: aggregate neighbor information N(u) by 
learnable weights W to each node as node representation h

Introduction
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𝐿→𝑀 (𝑁 )
𝜴(𝑀) ·𝜶

×

W

T Kipf & M Welling. “Semi-supervised classification with graph convolutional networks”. ICLR’17.



GNN: GCN [ICLR’17]

Introduction
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h(v) =
X

w2N(v)

h(w) ·W

×

W

9

• GNN Layers: Stacking multi-hop graph convolutions

T Kipf & M Welling. “Semi-supervised classification with graph convolutional networks”. ICLR’17.



GNN: GAT [ICLR’18]

• Graph Attention: learnable weights for edge aggregation

Introduction
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𝐿𝐿,𝑀 =
exp(attention(𝜴(𝑀),𝜴(𝑁)))∑

𝑀→𝑁 (𝐿 ) exp(attention(𝜴(𝑀),𝜴(𝑁)))

P Veličković et al. “Graph Attention Networks”. ICLR’18.



GNN: Tasks and Applications
Node-level

Introduction

Edge-level

Graph-level

individuals in 
the network

properties of 
the network

connections in 
the network

Graph
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Predictions
for Tasks



GNN: Tasks and Applications
Node-level

Introduction

Edge-level

Graph-level

User Profiling
E-commerce

Text-to-SQL
DB Schema

Knowledge Discovery
Knowledge Graph

Friend Suggestion
Social Network

Autonomous Wireless Networks

↭ Making operational decisions in wireless networks entails solving large-scale constrained
optimization problems.

↭ Solving these problems is very challenging, leading to the design and use of heuristic methods.

↭ We can leverage data to learn better autonomous network management policies using machine
learning.

N. NaderiAlizadeh Graph Neural Network Applications 21

Policy Optimization
Wireless Network

Drug Discovery
Protein Structure

individuals in 
the network

properties of 
the network

connections in 
the network



The Challenge: Graphs at Scale
Introduction

100M
nodes

10B
edges

Scales of graph datasets
Internet IP
4B nodes

Microsoft Academic
240M nodes

• Modern real-world graphs are on the scale of millions or billions

T Peixoto, "The Netzschleuder network catalogue and repository", 2020. https://networks.skewed.de/



The Challenge: Graphs at Scale
Introduction

• Large scale graphs: diverse domains, diverse patterns
Name Graph Size Data Size Domain

MAG 240M 200 GB Heterogeneous academic graph

WikiKG 90M 160 GB Wikidata knowledge graph

PCQM4Mv2 3M × 15 10 GB Molecules in quantum chemistry interaction

Amazon 2M 8 GB Product co-purchasing network

MD17 3M × 15 8 GB Molecular dynamics trajectories

COCO-SP 120K × 500 12 GB Segmentation of computer vision images

Snap-Patents 3M 20 GB Patent citation network

Hyperlink Graph 4B 400 GB Crawled webpage hyperlink



The Challenge:     Neighbor Explosion
• Neighboring nodes intensively increases 

with network depth

• Exponential, related with edge size

• Lost of node identity

Introduction

Time overhead

Expressiveness

CS224W, Stanford



The Challenge:     Neighbor Explosion
Case study: GCN computation graph

Introduction

1-layer

Network Layer

2-layer

3-layer

Neighborhood

1-hop

2-hop

3-hop

Computation

O(d)

O(d2)

O(m)Upper bound:

O(d3)
…

L-layer



The Challenge:     Limited Memory
• GPU memory is limited and costly

• Storing and processing graph data 
requires large memory space

Introduction

Memory overhead

Training scheme0

40

80

120

160

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

GPU Memory Capacity & Price in 10 Years

Capacity(GB) Price($/GB)



The Challenge:     Multi-scale
• Not only local nodes are important 

in prediction

• Need to capture global graph 
information efficiently

• Homophily: the inductive case, 
similar nodes cluster together

• Heterophily: the opposite case, 
connected nodes tend to be of 
dissimilar classes

Introduction

Time overhead

Expressiveness

Global

Local



The Challenge:     Multi-scale

• Graph: financial transaction network with 
benign or fraud users

• Task: identify fraud users

• Fraudsters use benign accounts as spring-
boards    to reach other fraudsters

Example: Heterophily in fraud detection

Introduction

1-hop connection is not enough!

1-hop

2-hop



The Opportunity: Graph Data Management
Introduction

Machine 
LearningGNN

What can the DB community do for GNN challenges?

Graph
MoD



Preview:     Neighbor Explosion
Introduction

Solution from Node-wise Similarity: GBP [NeurIPS’20]

• Replace GNN computation by 
Personalized PageRank
• Reduce neighborhood by 

bidirectional search
• Decoupling CPU and GPU 

computation

M Chen et al, "Scalable Graph Neural Networks Via Bidirectional Propagation", NeurIPS’20. 



Preview:     Limited Memory
Introduction

Solution from Subgraph Extraction: GENTI [VLDB’24]

• Only load subgraph (part of the 
graph) for GNN computation
• Structured subgraph sampled 

by k-many random walks
• GPU-oriented data structure 

and batch computation

Z Yu et al, "GENTI: GPU-Powered Walk-Based Subgraph Extraction for Scalable Representation Learning on Dynamic Graphs", VLDB’24. 



Preview:     Multi-scale
Introduction

Solution from Spectral Embedding: LD2 [NeurIPS’23]

• Embed full-graph information in 
spectral domain 
• Bridge spatial and spectral long-

range graph operations 
• Fast & scalable spectral 

embedding computation

H Liu et al, "SIGMA: An Efficient Heterophilous Graph Neural Network with Fast Global Aggregation", ICDE’25. 
N Liao et al, " LD2: Scalable Heterophilous Graph Neural Network with Decoupled Embedding", NeurIPS’23. 

Long-range similarity

1 0 1

+ ++

Feature smoothing

1 0 1

+

xu
pu xv

pv
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Preview: Scalable Graph+LM
Introduction

Future Direction in Graph-based RAG

• Scalable graph embedding, indexing, and retrieval
• Integration between graph data & LLM

Unpublished figure



Classical Approaches for
Scalable GNNs

Advances in Designing Scalable GNNs



Introduction
25 min

9:25 ‒ 9:50

Outline

Classical Approaches for Scalable GNNs
Siqiang Luo & Ningyi Liao

Hardware-aware Sampling  
Subgraph Extraction

Basic GNN: GCN (T Kipf & M Welling | ICLR’17)

Graph Sampling: GraphSAGE (W Hamilton et al | NeurIPS’17)

Graph Partition: AliGraph (R Zhu et al | VLDB’19)

Decoupled Propagation: SGC (F Wu et al | ICLR’19)

Application: Social Network Friend Recommendation



Basic GNN: GCN Scalability Analysis
Classical Approaches

T Kipf & M Welling. “Semi-supervised classification with graph convolutional networks”. ICLR’17.

v1 v3v2

u
h(u)
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w1 w2 w3 w4 w5 w6
x(w1) x(w2) x(w3) x(w4) x(w5) x(w6)

× W1× ×

Learnable Weights

Graph Aggregation

Representation

Node-wise viewGraph-wise view



Basic GNN: GCN Scalability Analysis
Classical Approaches

Learnable Weights

Graph Aggregation

<latexit sha1_base64="ZJ0jCufBdG8L5fcDsAP0tt3juB8="></latexit>
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Representation

T Kipf & M Welling. “Semi-supervised classification with graph convolutional networks”. ICLR’17.

n×n Sparse

f×f Dense

n×f Dense

Init:
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Basic GNN: GCN Complexity
Classical Approaches

T Kipf & M Welling. “Semi-supervised classification with graph convolutional networks”. ICLR’17.
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Layer 2

Layer 1
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𝐿 (𝑀𝑁 )

Weight Transformation

Graph Aggregation
Sparse-dense Matrix Multiplication
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𝐿 (𝑀𝑁 2)
Dense-dense Matrix Multiplication
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Node-wise view Computation



Graph Sampling
Classical Approaches

• Node-wise sampling: limit 
neighborhood size of each node

• Layer-wise sampling: limit total 
neighborhood size of each layer

• Subgraph-wise sampling: limit 
neighborhood within a subgraph

X Liu et al, "Sampling Methods for Efficient Training of Graph 
Convolutional Networks: A Survey", J. Autom. Sinica 2022. 

𝑆 𝑆

𝑆

Subgraph



Graph Sampling: GraphSAGE (NeurIPS’17)

Classical Approaches

• Sampling in graph aggregation: limit 
neighborhood size of each node to S

• Structured neighborhood: sampled 
representations are fixed-length

• Feasible for various aggregation schemes

Layer 2

Layer 1

W Hamilton et al, "Inductive Representation Learning in Large Attributed Graphs", NeurIPS’17. 

𝑆 = 2Raw 
Graph

Sampled 
Graph

Sample
Computation Graph



Graph Partition
Classical Approaches

• Objective: minimize data loss in 
subgraphs during training

• Commonly used in multi-host/ 
multi-GPU training

• MB: only load subgraph onto GPU

H Yuan et al, "Comprehensive Evaluation of GNN Training 
Systems: A Data Management Perspective", VLDB’24. 

Graph Neural Network Training Systems: A Performance
Comparison of Full-Graph and Mini-Batch
Saurabh Bajaj, Hojae Son, Juelin Liu, Hui Guan, and Marco Sera!ni

University of Massachusetts, Amherst
Amherst, Massachusetts, USA

{sbajaj,hojaeson,juelinliu,huiguan,msera!ni}@umass.edu

ABSTRACT
Graph Neural Networks (GNNs) have gained signi!cant attention
in recent years due to their ability to learn representations of graph-
structured data. Two common methods for training GNNs are mini-
batch training and full-graph training. Since these two methods
require di"erent training pipelines and systems optimizations, two
separate classes of GNN training systems emerged, each tailored
for one method. Works that introduce systems belonging to a par-
ticular category predominantly compare them with other systems
within the same category, o"ering limited or no comparison with
systems from the other category. Some prior work also justi!es its
focus on one speci!c training method by arguing that it achieves
higher accuracy than the alternative. The literature, however, has
incomplete and contradictory evidence in this regard.

In this paper, we provide a comprehensive empirical comparison
of representative full-graph and mini-batch GNN training systems.
We !nd that the mini-batch training systems consistently converge
faster than the full-graph training ones across multiple datasets,
GNN models, and system con!gurations. We also !nd that mini-
batch training techniques converge to similar to or often higher
accuracy values than full-graph training ones, showing that mini-
batch sampling is not necessarily detrimental to accuracy. Our work
highlights the importance of comparing systems across di"erent
classes, using time-to-accuracy rather than epoch time for perfor-
mance comparison, and selecting appropriate hyperparameters for
each training method separately.

1 INTRODUCTION
Graph neural networks (GNNs) are a class of machine learning
models that reached state-of-the-art performance in many tasks
related to the analysis of graph-structured data, including social
network analysis, recommendations, and fraud detection [14, 40,
78]. They are often used to process large graphs that have millions
of vertices and billions of edges [16, 29, 68]. A large volume of
recent work, both in academia and industry, has been dedicated to
scaling GNN training to support such large graphs using multi-GPU
systems. This is a challenging problem because GNNs run multiple
rounds of message passing across neighboring vertices, which is an
irregular computation.

Two classes of GNN systems: Full-graph and mini-batch.
GNNs can be trained using either a mini-batch or a full-batch
(typically called full-graph) approach, much like other machine
learning models. In standard deep neural network (DNN) train-
ing, the dataset consists of individual training examples that can
be processed independently and have no structural dependencies.
In GNNs, in contrast, the training data is composed of vertices

GNN model
parameters

GNN model
parameters

NVLink 
or PCIe

PCIe

GNN model
parameters

PCIe

GNN model
parameters

Graph
partition

a) PipeGCN (full-graph)

Graph
partition

GPU

GPU

Train on local partition

Sample1.

CPU memory

Graph Structure
+ input features

2. Load input 
features

GPU

GPU

b) DGL (mini-batch)

3. Train on local
batch

Input features

Input features

Message 
passing 
across 

partitions

Figure 1: Di!erent data management pipelines in two ex-
ample systems: PipeGCN (full-graph) and DGL (mini-batch).
The diagrams omit gradient synchronization.

that are interconnected through edges, forming a graph structure
where vertices cannot be treated as independent training examples.
Full-graph and mini-batch training deal with these dependencies
with di"erent data management pipelines to partition data and
parallelize computation and communication when scaling to large
graphs. This resulted in the development of two distinct classes of
GNN training systems, each designed to support either mini-batch
or full-graph training.

Full-graph GNN training performs message-passing across the
entire graph at each epoch. To scale to large graphs that do not !t in
the memory of a single GPU, multi-GPU full-graph training systems
use model parallelism: they partition the graph, process di"erent
partitions at di"erent GPUs, and exchange hidden vertex features
across partitions [20, 31, 49]. For example, the PipeGCN [55] full-
graph training system partitions the input graph and keeps each
partition in a di"erent GPU (see Figure 1(a)). The black dotted
lines show the communication of hidden vertex features across
GPUs at each GNN layer in the forward and backward pass. The
communication happens through either a fast cross-GPU bus such
as NVLink, if available, or PCIe.
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S Bajaj et al, "Graph Neural Network Training Systems: A 
Performance Comparison of Full-Graph and Mini-Batch", VLDB’25. 



Graph Partition: AliGraph (VLDB’19)

Classical Approaches

• Available partitions:
• METIS
• Vertex/Edge cut
• 2D partition
• Streaming

• Local Sampling within 
subgraphs on each host

R Zhu et al, "Aligraph: A comprehensive graph neural network platform", VLDB’19. 

Host 1 Host 2
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Local Sampling

Global Aggregate
& Transform

Global

Local



Decoupled Propagation
Classical Approaches

• Graph propagation is the 
computational bottleneck

• Graph computation     CPU

• Network learning     GPU

• MB: random sampling/ 
hashing

S Bajaj et al, "Graph Neural Network Training 
Systems: A Performance Comparison of 
Full-Graph and Mini-Batch", VLDB’25. 
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N Liao et al, "A Comprehensive Benchmark on Spectral GNNs: The 
Impact on Efficiency, Memory, and Effectiveness", SIGMOD’26. 
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Decoupled Propagation: SGC (ICLR’19)

Classical Approaches

• Combine the iterative 
propagations in GCN

• Reduce GPU memory overhead: 
O(m) O(s)

• No change in time overhead: 
remain O(Lm)

F Wu et al, "Simplifying Graph Convolutional Networks", ICLR’19. 
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L ·X

<latexit sha1_base64="DgSx5syVJA9HiemAwhJ54vCks4E="></latexit>

H
(l+1) = �(H(l)

W
(l)), l = 0, 1, · · · , L� 1

L Graph Propagation

L Weight Transformation

GPU

CPU/RAM



Classical Approaches: Takeaways
• Graph computation is the bottleneck in GNN scalability

Neighbor Explosion Limited Memory

Graph Sampling
o Reduce neighborhood aggregation

Graph Partition
o Reduce subgraph size

Graph Partition
o Batch training on subgraphs

Decoupled Propagation
o Transfer computation to CPU

• Challenges:

• Approaches:



Classical Approaches: Applications

• Candidates are partitioned: based on 
different retrieval criteria

• GraphSAGE sampling: fast neighbor 
lookup

• MB: sampling within partitions

Social Network Friend Recommendation

J Shi et al, "Embedding Based Retrieval in Friend Recommendation", SIGIR’23. 

Embedding Based Retrieval in Friend Recommendation SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

can be written as

L(𝐿,𝑀 ) =
∑

𝑁→NEG(𝐿)
max(0, sim(𝐿𝐿, 𝐿𝑁) ↑ sim(𝐿𝐿, 𝐿𝑀 ) + ω) (2)

where 𝐿𝑂 denotes the last-layer representation (w.l.o.g. for any node
𝑀), and NEG(𝑁) denotes the set of negative samples (non-edges) for
the anchor node 𝑁, 𝑂 denotes a positive sample (true edge) from 𝑁,
ω is the margin hyperparameter, and sim is a di!erentiable similar-
ity function. In practice, we use cosine similarity for sim(·, ·) and
employ random negative sampling for NEG(𝑁). We tune dropout,
learning rate, weight decay, and non-linearity choices in addition to
the margin ω and the number of negative samples per anchor node.
We use the Adam optimizer [17], and early stop training based on
plateauing validation loss.

Training GNNs at large-scale is non-trivial and poses severe
scalability challenges [14, 37, 38]. We "rst preprocess the graph
into a compressed sparse row (CSR) format to enable 𝑃 (1) neigh-
borhood look-ups, and compactly serialize node features as well. In
order to train our model, we employ a minibatch training scheme:
speci"cally, we utilize an internal model training framework which
employs a producer-consumer shared-memory setup, in which
producers sample minibatches by issuing queries to our compact
graph and feature objects, and put them on queues, and consumers
read from these queues and train using GPUs. We use a single
n1-highmem-96 Google Compute Engine VM with 96 CPUs, 624G
memory, and 4 Nvidia p100 GPUs for training. We use the same
producer-consumer setup for parallel inference with the trained
model upon convergence, and measure o#ine ranking metrics such
as Hit Rates andMean Reciprocal Rank [21].We operationalize daily
user embedding generation for hundreds of millions of Snapchat
users with this model training and inference setup using Apache
Air$ow2. We version our embeddings and monitor their quality
tightly given o#ine ranking metric thresholds.

2.2 Infrastructure Optimizations for
Approximate Nearest-Neighbor Search

EBR typically uses Approximate Nearest-Neighbor (ANN) search
[1] for candidate generation. There are many open source libraries
such as Hnswlib [25] and FAISS [16], that can perform ANN search
e%ciently. At Snapchat, our candidate generation systems operate
at a large scale (i.e. thousands of queries-per-second, or QpS) on
a massive friend graph with billions of nodes, thus encoding the
entire friend graph into a single index is undesirable. This is because
a large index would typically lead to issues such as longer index
load time, memory consumption issues, larger latencies, etc. One
approach is to randomly partition a large index intomultiple smaller
indexes and have a federator layer that can fan queries out to all the
smaller indexes and merge results. While this solution is feasible,
we have developed a more cost-e!ective solution that capitalizes
on some unique characteristics of Snapchat social graph.

First and foremost, we cut our index size down signi"cantly by
indexing only active users (e.g. users who are active on Snapchat
at least once in the last 90 days) since the majority of friend links
are established among active users. Even after this pruning, our
index was still large with around 2 terabytes in size. Next, we

2https://air$ow.apache.org/

Figure 2: Embedding Query Work!ow. We constrain our-
selves to operations on only active users, greatly reducing
ANN index size. We also geographically shard the index to
leverage the geographic proximity of most friending behav-
iors. Both optimizations capture out-sized business value
with massive infrastructure cost bene"ts.

exploit another aspect of our friend graph – a majority of friend
links are established between friends who are geographically closer
together. The exact geographic proximity that captures a majority
of friend links varies across the world, e.g. Europe has a di!erent
proximity compared to North America or Asia. But the larger trend
of friend links in relatively close proximity remains [33]. By taking
advantage of this, we divided our index into a few segments based
on geographic locations, such as North America, Europe, MENA,
Asia, etc. This reduced the index size to a more manageable memory
footprint. In addition, by avoiding the fan-out to all indexes and
sending the requests to one of the geographic partitions based
on searcher’s location, we kept the query latency low while still
capturing the majority of friending activities. Figure 2 illustrates
the embedding query $ow. The primary learning is that by taking
advantage of certain characteristics of the friend graph, we can build
a more scalable, robust, and cost e!ective system while realizing
an outsized portion of the business impact.

3 RESULTS
We tested the e!ectiveness of EBR for friend recommendations
on Snapchat using online A/B testing. The control group included
candidates from retrieval algorithms in production including FoF
and the treatment group included candidates from EBR as an ad-
ditional retrieval source. We use the number of friendships made
from friend recommendations as the success metric. Additionally,
we ran AB tests in di!erent markets to better understand its impact.
The results discussed below are from the A/B tests that ran for 4
weeks with the signi"cance level 𝑄 set to be 0.01.

In the A/B tests, we saw statistically signi"cant improvements
for the treatments across all markets. The increases in the number



Classical Approaches: Evaluation

• Sampling: suffer from neighbor explosion for 
using more redundant memory

• Decoupling: better memory scalability for less 
additional memory overhead

• Possible OOM under limited memory

Memory Footprint

N Liao et al, "Scalable Decoupling Graph Neural Networks 
with Feature-Oriented Optimization", VLDBJ’23. 



Classical Approaches: Evaluation

• Sampling: higher time overhead caused 
by device idleness and transmission

• Decoupling: speed mostly determined 
by graph computation algorithms

Time Efficiency
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Hardware-aware Sampling
Advances in Designing Scalable GNNs
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Transmission: ADGNN [SIGMOD’23]

Hardware-aware Sampling

Z Song et al, "ADGNN: Towards Scalable GNN Training with Aggregation-Difference Aware Sampling", SIGMOD’23. 

Graph Neural Network Training Systems: A Performance
Comparison of Full-Graph and Mini-Batch
Saurabh Bajaj, Hojae Son, Juelin Liu, Hui Guan, and Marco Sera!ni

University of Massachusetts, Amherst
Amherst, Massachusetts, USA

{sbajaj,hojaeson,juelinliu,huiguan,msera!ni}@umass.edu

ABSTRACT
Graph Neural Networks (GNNs) have gained signi!cant attention
in recent years due to their ability to learn representations of graph-
structured data. Two common methods for training GNNs are mini-
batch training and full-graph training. Since these two methods
require di"erent training pipelines and systems optimizations, two
separate classes of GNN training systems emerged, each tailored
for one method. Works that introduce systems belonging to a par-
ticular category predominantly compare them with other systems
within the same category, o"ering limited or no comparison with
systems from the other category. Some prior work also justi!es its
focus on one speci!c training method by arguing that it achieves
higher accuracy than the alternative. The literature, however, has
incomplete and contradictory evidence in this regard.

In this paper, we provide a comprehensive empirical comparison
of representative full-graph and mini-batch GNN training systems.
We !nd that the mini-batch training systems consistently converge
faster than the full-graph training ones across multiple datasets,
GNN models, and system con!gurations. We also !nd that mini-
batch training techniques converge to similar to or often higher
accuracy values than full-graph training ones, showing that mini-
batch sampling is not necessarily detrimental to accuracy. Our work
highlights the importance of comparing systems across di"erent
classes, using time-to-accuracy rather than epoch time for perfor-
mance comparison, and selecting appropriate hyperparameters for
each training method separately.

1 INTRODUCTION
Graph neural networks (GNNs) are a class of machine learning
models that reached state-of-the-art performance in many tasks
related to the analysis of graph-structured data, including social
network analysis, recommendations, and fraud detection [14, 40,
78]. They are often used to process large graphs that have millions
of vertices and billions of edges [16, 29, 68]. A large volume of
recent work, both in academia and industry, has been dedicated to
scaling GNN training to support such large graphs using multi-GPU
systems. This is a challenging problem because GNNs run multiple
rounds of message passing across neighboring vertices, which is an
irregular computation.

Two classes of GNN systems: Full-graph and mini-batch.
GNNs can be trained using either a mini-batch or a full-batch
(typically called full-graph) approach, much like other machine
learning models. In standard deep neural network (DNN) train-
ing, the dataset consists of individual training examples that can
be processed independently and have no structural dependencies.
In GNNs, in contrast, the training data is composed of vertices

GNN model
parameters

GNN model
parameters

NVLink 
or PCIe

PCIe

GNN model
parameters

PCIe

GNN model
parameters

Graph
partition

a) PipeGCN (full-graph)

Graph
partition

GPU

GPU

Train on local partition

Sample1.

CPU memory

Graph Structure
+ input features

2. Load input 
features

GPU

GPU

b) DGL (mini-batch)

3. Train on local
batch

Input features

Input features

Message 
passing 
across 

partitions

Figure 1: Di!erent data management pipelines in two ex-
ample systems: PipeGCN (full-graph) and DGL (mini-batch).
The diagrams omit gradient synchronization.

that are interconnected through edges, forming a graph structure
where vertices cannot be treated as independent training examples.
Full-graph and mini-batch training deal with these dependencies
with di"erent data management pipelines to partition data and
parallelize computation and communication when scaling to large
graphs. This resulted in the development of two distinct classes of
GNN training systems, each designed to support either mini-batch
or full-graph training.

Full-graph GNN training performs message-passing across the
entire graph at each epoch. To scale to large graphs that do not !t in
the memory of a single GPU, multi-GPU full-graph training systems
use model parallelism: they partition the graph, process di"erent
partitions at di"erent GPUs, and exchange hidden vertex features
across partitions [20, 31, 49]. For example, the PipeGCN [55] full-
graph training system partitions the input graph and keeps each
partition in a di"erent GPU (see Figure 1(a)). The black dotted
lines show the communication of hidden vertex features across
GPUs at each GNN layer in the forward and backward pass. The
communication happens through either a fast cross-GPU bus such
as NVLink, if available, or PCIe.
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4 Global Sampling

o Full graph view
o Precision guarantee
o Transmission overhead

Local Sampling
o Distributed storage & computation
o Information loss
o Depends on partition



Transmission: ADGNN [SIGMOD’23]

• Maintain a set of effective neighbors 
locally

• Only communicate for top remote 
nodes that reduce precision

Hardware-aware Sampling

Z Song et al, "ADGNN: Towards Scalable GNN Training with Aggregation-Difference Aware Sampling", SIGMOD’23. 

ADGNN: Towards Scalable GNN Training with Aggregation-Di!erence Aware Sampling 229:7

these to the corresponding server. The servers performmodel storage and updates, whereas workers
perform the main computations.
Sampling and Subgraph Construction.During training, each worker calls Sampler to recursively
sample target vertices and neighbors for each layer. Users need to implement two functions: Sample
and Sample4EachLayer. The former de!nes the entire sampling process for 𝐿 layers, while the latter
speci!es the sampling rules for a single layer. After each sampling for a single layer, Subgraph
Constructor generates a trainable subgraph object for a single GNN layer, which includes obtaining
target vertices, encoding vertices, building the adjacency matrix, generating the initial feature
matrix and constructing a routing table. The routing table speci!es which vertex embeddings the
current worker needs to send to other workers. We provide the following example to detail the
process.

Example 4.1. Fig. 2 depicts the distributed sampling process for a 2-layer GNN model conducted
by ADGNN with three workers𝑀𝑁1,𝑀𝑁2, and𝑀𝑁3. Target nodes (the top-level vertices in Fig. 2)
from the training set are assigned to workers using a partitioning method. We take the actions of
wk1 as an example. First, 𝑀𝑁1 randomly selects 𝑂1 and 𝑂2 as 𝑂0’s neighbors and 𝑂1 and 𝑂3 as 𝑂1’s
neighbors according to a local adjacency list. Next, 𝑀𝑁1 unions {𝑂1, 𝑂2} and {𝑂1, 𝑂3} to indicate
that it samples 𝑂1, 𝑂2, and 𝑂3. These three vertices will be used in the previous layer. Finally,𝑀𝑁1
noti!es 𝑀𝑁2 to include 𝑂3 in the next sampling round. After sampling for the second layer, we
obtain the target vertices of the !rst layer, which are at the middle level. Note that the sampling
process is reversed compared to the aggregation process in FP. In the second layer,𝑀𝑁1 collects the
embeddings of vertex 𝑂3 from𝑀𝑁2 and concatenates it with the local embedding matrix composed
of 𝑂1 and 𝑂2.
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Fig. 2. Distributed Sampling (solid lines represent local edges, while dashed lines represent remote edges.)

FP and BP. During FP, ADGNN fetches trainable subgraphs of each layer sequentially, gathers the
remote neighboring embeddings (i.e., embeddings residing on di"erent machines from the target
vertices), and concatenates them with local embeddings for aggregation. A computation graph is
constructed during this process. During BP, ADGNN computes the embedding gradients for each
layer. The embedding gradients are sent to neighboring vertices along the in-edge directions for
the computation of embedding gradients of the previous layer. ADGNN calculates the gradients of
model parameters, denoted as →𝜴 , for each layer of BP. These gradients are then sent to servers
for updating the model.

5 AGGREGATION-DIFFERENCE AWARE SAMPLING
5.1 Aggregation Di!erence
Most existing sampling techniques used in GNN training either sample in each iteration, such as
GraphSAGE [14] implemented in AliGraph [52] and DistDGL [50], or sample once during data-
preparation, like the techniques used in AGL [46]. Neither of these techniques strikes a good balance

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 229. Publication date: December 2023.

Local Edges Global Edges

Balance Local & Global Sampling

Sampled ReprSampled Repr

Precision

229:8 Zhen Song et al.

between accuracy and average epoch time. Thus, we propose to sample once each𝐿 iterations to
amortize the sampling cost. The choice of𝐿 is covered later. However, simply applying it to random
sampling, such as in GraphSAGE [14], can result in poor performance. This is because random
sampling follows a discrete uniform distribution, i.e., �̂� → DiscreteUniform({𝜴𝐿 |𝑀 ↑ N(𝑁)}), while
we cannot guarantee that the variance remains low. Since the neighbor set that is sampled is used
in the next𝐿 ↓ 1 iterations, a large deviation from the expected value can result in a long-term
negative impact on the direction of the gradient descent. Therefore, although random sampling at
intervals of𝐿 iterations can reduce the sampling cost in each iteration, it may lead to uncontrollable
degradation of convergence due to signi!cant deviations from expected values.
Therefore, it is crucial to measure and minimize the error induced by sampling. Existing tech-

niques [4, 5, 53] aim to minimize the variance to approximate full aggregation while maintaining
randomness in each sampling iteration only based on graph topologies. However, these techniques
lack design considerations that consider the unique characteristic of GNNs, i.e., features. Motivated
by this, we introduce a novel metric, Aggregation Di!erence (AD), that measures the sampling error
and minimizes the error from the perspective of system optimizations, where we select the optimal
neighbor combination to generate the aggregation.

De"nition 5.1. Given a sampling technique S, a vertex 𝑁 , and a fanout 𝑂 , S(𝑁 ;𝑂) denotes the
sampled neighbor set using S with 𝑂 .

We de!ne 𝑃𝑄 as the squared Euclidean distance between the average value of full-neighbor
aggregation and that of sampled aggregation. The average sampled aggregation approximates
average full-neighbor aggregation, and the squared Euclidean distance can quantify the di"erence
between two vectors. In the case of Example 5.3, the average aggregation of the full-neighbor set
{𝑁2, 𝑁3, 𝑁4, 𝑁5} of 𝑁1 is [-0.2, 0.4, 0.3], while the average aggregation of the sampled neighbor set {𝑁2,
𝑁3} is [-0.15, 0.45, 0.45]. The error of approximating the average aggregation result of {𝑁2, 𝑁3, 𝑁4,
𝑁5} with the average aggregation result of {𝑁2, 𝑁3} can be calculated using the squared Euclidean
distance, which is 0.0275.

De"nition 5.2. Given a sampled neighbor set S(𝑁 ;𝑂), 𝑃𝑄𝑀 ,𝑁
S(𝑂;𝑃 ) represents the 𝑅

𝑀𝑄 layer’s Aggre-
gation Di!erence of vertex 𝑁 in the 𝑆𝑀𝑄 iteration with S(𝑁 ;𝑂), calculated as follows:

𝑃𝑄𝑀,𝑁
S(𝑂;𝑃 ) = | |

1
|N (𝑁) |

∑
𝐿↑N(𝑂)

𝜴 𝑀 ,𝑁
𝐿 ↓

1
𝑂

∑
𝐿↑S(𝑂;𝑃 )

𝜴 𝑀 ,𝑁
𝐿 | |

2, (4)

whereN(𝑁) is the neighbor set of 𝑁 and 𝜴 𝑀,𝑁
𝐿 denotes the 𝑅𝑀𝑄 layer embedding of vertex 𝑀 in the 𝑆𝑀𝑄

iteration.

Example 5.3. As shown in Figure 3a, the average aggregation result of 𝑁1 is [-0.2, 0.4, 0.3], while
that of the sampled neighbor set {𝑁2, 𝑁3} is [-0.15, 0.45, 0.45]. Therefore, the aggregation di"erence
is calculated as (-0.2 + 0.15)2 + (0.4 ↓ 0.45)2 + (0.3 ↓ 0.45)2 = 0.0275.

We simplify 𝑃𝑄𝑀 ,𝑁
S(𝑂;𝑃 ) to 𝑃𝑄S(𝑂;𝑃 ) when the layer number and iteration count are unspeci!ed.

Similarly, we simplify 𝑃𝑄𝑀 ,𝑁
S(𝑂;𝑃 ) to 𝑃𝑄

𝑀,𝑁 when the sampled neighbor set is unspeci!ed.

De"nition 5.4. Given a fanout 𝑂 , the 𝜶-optimal neighbor set of a vertex 𝑁 , denoted asV𝑅𝑆𝑀 (𝑂 ; 𝑁),
is the neighbor combination that has theminimum𝑃𝑄 w.r.t full-neighbor aggregation, i.e.,V𝑅𝑆𝑀 (𝑂 ; 𝑁) =
argmin𝑇𝐿 𝑃𝑄𝑇𝐿 , where 𝑇𝑂 ↔ N(𝑁) ↗ |𝑇𝑂 | ↘ 𝑂 . V𝑅𝑆𝑀 (𝑂 ; 𝑁) in the 𝑅𝑀𝑄 layer (1 ↘ 𝑅 ↘ 𝑈) of the 𝑆𝑀𝑄

iteration is denoted as V𝑀,𝑁
𝑅𝑆𝑀 (𝑂 ; 𝑁).

We aim to obtain the 𝑂-optimal neighbor set for each vertex in each layer. It is challenging to
ensure that each mini-batch has a distribution that is similar to that of the entire training set. We

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 229. Publication date: December 2023.



Transmission: GIDS [VLDB’24]

• Sampling can be performed independently from NN training

• Parallel sampling for batches on CPU graph storage

Graph Structure: Parallel Sampling

Hardware-aware Sampling

J Yang et al, “GNNLab: a factored system for sample-based GNN training over GPUs”, EuroSys’22.
J Park et al, "Accelerating Sampling and Aggregation Operations in GNN Frameworks with GPU Initiated Direct Storage Accesses", VLDB’24. 

GNNLab: A Factored System for Sample-based GNN Training over GPUs EuroSys ’22, April 5–8, 2022, RENNES, France
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Figure 1.An example of the SETmodel for sample-based training
in a 2-layer GNN on V7.

training, i.e., each vertex considers its all neighborswhen ag-
gregating features. However, whole-graph training is hard
to scale [47]. First, it is increasingly common for GNNs to
encounter a large-scale graph with high-dimensional fea-
tures [20, 35]. Second, many graphs follow a highly skewed
degree distribution [13]. Awell-connected vertex will aggre-
gate features from a large fraction of the graph with just a
few hops (e.g., two), leading to substantial work imbalance.

Sample-based GNN training. Due to the above issues,
many emerging GNN models [11, 25, 28, 61] adopt the
sample-based training approach. This approach splits the
training vertices into multiple mini-batches and conducts
GNN training on mini-batches iteratively by following the
SET model. The model is split into three stages: Sample,
Extract, and Train. First, starting from each vertex in a
mini-batch, the input graph is sampled according to a user-
de!ned algorithm; the output contains all sampled vertices
(also referred to as samples).1 Next, the features of sampled
vertices are extracted into an individual bu"er. Finally, GNN
training is conducted on the samples with their features. Fig-
ure 1 illustrates an example of the SET model (left-right) for
training a 2-layer GNN onV7. The graph sampling algorithm
uniformly selects two neighbors for each vertex. Note that
the sampled vertices may be deduplicated (e.g., V12) and re-
assigned with consecutive IDs (starting from 0).
Prior work has shown that the sample-based approach

can achieve almost the same training accuracy but with
much less computational cost and scales well for large
graphs [12, 36, 47]. Hence, it has been widely adopted by ex-
isting GNN systems [1, 2, 20, 35, 67]. Furthermore, since the
sample-based approach forms the grid-structured data with
!xed size (i.e., sampled vertices and their features), GPUs are
becoming popular in GNN training [17, 20, 35, 37, 38, 56].
Figure 2(a) shows a conventional design for sample-based

1There exist various sampling algorithms, such as k-hop random/weighted
neighborhood sampling [25, 28, 64]. The sampling probability could be uni-
form [25] or non-uniform (e.g., in proportion to the edge weight [43]).

Figure 2. The conventional design for sample-based GNN train-
ing with two optimizations.

GNN training over two GPUs. All graph topological data
and features are kept in the host memory. For each mini-
batch, graph sampling and feature extracting are performed
on CPUs sequentially; then the sampled vertices and their
features are transferred to GPU memory for model training.
Further, GNNs use data parallelism by default to enable mul-
tiple GPUs, as they commonly employ simple models with
only 2 or 3 layers [25, 33, 49]. Each GPU trains mini-batches
independently and exchanges gradients among GPUs to up-
date model parameters synchronously or asynchronously.
However, with the increase of input data size—large-scale

graphs and high-dimensional features, sampling the graph
on CPUs and transferring features to GPU memory become
two main performance bottlenecks. Table 1 reports the run-
time breakdown of representative GNN systems for train-
ing a 3-layer GCN [33] on OGB-Papers [4].2 After enabling
GPU-based training, the Sample and Extract stages domi-
nate the end-to-end GNN training time, accounting for 24%
and 54%, respectively, on DGL [1]. It will get worse when
using multiple GPUs, becoming 38% and 49% for 8 GPUs.
Consequently, this motivates recent research e"orts to fur-
ther improve GNN training in these two aspects.

GPU-based feature caching. The running time of the Ex-
tract stage is mainly dominated by loading features of sam-
pled vertices from host memory to GPU memory due to the
limited PCIe bandwidth (normally less than 16GB/s) [32,
35]. Thus, prior work (e.g., PaGraph [35]) proposed to se-
lectively cache the features associated with frequently sam-
pled vertices in GPUmemory (see Cache in Figure 2(a)). Fur-
ther, a static caching strategy is adopted to avoid the over-
head of dynamic data tracking and swapping. It pre-sorts
all vertices by their out-degrees and !lls up the GPU cache
with the features of the top-ranked vertices. Since DGL does
not support GPU-based feature caching, we implemented
TSOTA, a state-of-the-art GNN system based on the conven-
tional design, which extends DGL [1] with a static GPU-
based cache [35] and a fast GPU-based sampler from scratch.

2Detailed experimental setup can be found in §7.
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• CPU: 1st layer, from attribute to embedding

• GPU: higher layers, only process embeddings

Layer-based Computation Orchestrating 

Hardware-aware Sampling

X Ai et al, " NeutronOrch: Rethinking Sample-Based GNN Training 
under CPU-GPU Heterogeneous Environments", VLDB’24. 
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Figure 5: Two examples of multi-stream pipeline design in
the ideal and actual situations.

Figure 6: (a) GPU utilization with di!erent batch sizes. (b)
Per-epoch runtime and memory usage with di!erent batch
sizes. (c) Transfer volume and memory usage with di!erent
ratios of cached vertices (cache ratio).

6 (a) and (b) demonstrate that training with a larger batch size is
bene!cial for GNNs in terms of achieving better GPU utilization.
Although this consumes more GPU memory, it results in faster
execution. The results in Figure 6 (c) reveal that a larger cache ratio
results in a linear transfer reduction of features in the gathering step.
However, when increasing the batch size from 128 to 4096, the ratio
of cached vertices is decreased from 0.37 to 0.05 due to insu"cient
GPU memory, which results in numerous cache misses. Moreover,
as the graph topology data and feature dimensions increase, the
bene!ts brought by caching vertices will further diminish.
Case 4: Placing sampling and gathering on the GPU su!ers
from GPU memory and resource contention We show an
example of this case in Figure 4 (d). When all steps of sample-based
GNN training are executed on the GPU, it results in GPU contention
and CPU idle. The reasons for this situation have been discussed
in cases 2 and 3. Firstly, the computation kernels of sampling and
training compete for the limited GPU cores, leading to a slowdown
in both. Secondly, the batch data for training and cache data for

gathering contend with the limited GPU memory. When further
making the GPU responsible for the sampling step, the GPU needs
to additionally hold the graph topology data, which can make the
GPU memory contention worse.

3.2 Summary
We conduct experimental analysis on di#erent task orchestrating
methods in GPU-CPU heterogeneous environments. Our obser-
vations reveal that step-based task orchestrating leads to an im-
balanced allocation of computational and memory resources. As-
signing two or more steps to the GPU may result in memory or
GPU resource contention. On the other hand, assigning one or two
steps to the CPU may cause ine"cient CPU processing to become
a bottleneck. A well-designed CPU-GPU heterogeneous system
should ensure adequate and balanced CPU and GPU utilization to
achieve optimal performance. However, the step-based task orches-
trating methods fail to achieve this. This motivates us to design a
resource-balanced task orchestrating method.

4 NEUTRONORCH
We propose NeutronOrch, a sample-based GNN training system
that e#ectively improves CPU and GPU resource utilization through
two critical techniques.
Hotness-aware layer-based task Orchestrating. Unlike step-
based task orchestratingmethods, NeutronOrch decouples the train-
ing process by layers rather than steps and employs the sample-
gather-train computation of each sub-task to a single device, elimi-
nating the constraint of computing each step entirely on the CPU
or GPU. To prevent CPU computation from becoming a bottleneck,
NeutronOrch allows the CPU to compute embeddings only for the
hot vertices that are frequently accessed. Moreover, NeutronOrch
extends stale synchronous processing [12] to guarantee bounded
staleness of embedding reuse, thereby guaranteeing !nal accuracy.
Super-batch pipelined training. Concurrently executing sub-
tasks deployed on the GPU and CPU is essential to achieve high
performance. However, it is challenging for layer-based task orches-
trating because of the cross-layer data dependencies between the
CPU and GPU training process. To solve this, we propose a super-
batch pipelined training. In each super-batch, the CPU and GPU
execute sub-tasks concurrently and independently of each other so
that the training process is fully pipelined. In addition, this pipeline
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Figure 6: (a) GPU utilization with di!erent batch sizes. (b)
Per-epoch runtime and memory usage with di!erent batch
sizes. (c) Transfer volume and memory usage with di!erent
ratios of cached vertices (cache ratio).

6 (a) and (b) demonstrate that training with a larger batch size is
bene!cial for GNNs in terms of achieving better GPU utilization.
Although this consumes more GPU memory, it results in faster
execution. The results in Figure 6 (c) reveal that a larger cache ratio
results in a linear transfer reduction of features in the gathering step.
However, when increasing the batch size from 128 to 4096, the ratio
of cached vertices is decreased from 0.37 to 0.05 due to insu"cient
GPU memory, which results in numerous cache misses. Moreover,
as the graph topology data and feature dimensions increase, the
bene!ts brought by caching vertices will further diminish.
Case 4: Placing sampling and gathering on the GPU su!ers
from GPU memory and resource contention We show an
example of this case in Figure 4 (d). When all steps of sample-based
GNN training are executed on the GPU, it results in GPU contention
and CPU idle. The reasons for this situation have been discussed
in cases 2 and 3. Firstly, the computation kernels of sampling and
training compete for the limited GPU cores, leading to a slowdown
in both. Secondly, the batch data for training and cache data for

gathering contend with the limited GPU memory. When further
making the GPU responsible for the sampling step, the GPU needs
to additionally hold the graph topology data, which can make the
GPU memory contention worse.

3.2 Summary
We conduct experimental analysis on di#erent task orchestrating
methods in GPU-CPU heterogeneous environments. Our obser-
vations reveal that step-based task orchestrating leads to an im-
balanced allocation of computational and memory resources. As-
signing two or more steps to the GPU may result in memory or
GPU resource contention. On the other hand, assigning one or two
steps to the CPU may cause ine"cient CPU processing to become
a bottleneck. A well-designed CPU-GPU heterogeneous system
should ensure adequate and balanced CPU and GPU utilization to
achieve optimal performance. However, the step-based task orches-
trating methods fail to achieve this. This motivates us to design a
resource-balanced task orchestrating method.

4 NEUTRONORCH
We propose NeutronOrch, a sample-based GNN training system
that e#ectively improves CPU and GPU resource utilization through
two critical techniques.
Hotness-aware layer-based task Orchestrating. Unlike step-
based task orchestratingmethods, NeutronOrch decouples the train-
ing process by layers rather than steps and employs the sample-
gather-train computation of each sub-task to a single device, elimi-
nating the constraint of computing each step entirely on the CPU
or GPU. To prevent CPU computation from becoming a bottleneck,
NeutronOrch allows the CPU to compute embeddings only for the
hot vertices that are frequently accessed. Moreover, NeutronOrch
extends stale synchronous processing [12] to guarantee bounded
staleness of embedding reuse, thereby guaranteeing !nal accuracy.
Super-batch pipelined training. Concurrently executing sub-
tasks deployed on the GPU and CPU is essential to achieve high
performance. However, it is challenging for layer-based task orches-
trating because of the cross-layer data dependencies between the
CPU and GPU training process. To solve this, we propose a super-
batch pipelined training. In each super-batch, the CPU and GPU
execute sub-tasks concurrently and independently of each other so
that the training process is fully pipelined. In addition, this pipeline
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Figure 6: (a) GPU utilization with di!erent batch sizes. (b)
Per-epoch runtime and memory usage with di!erent batch
sizes. (c) Transfer volume and memory usage with di!erent
ratios of cached vertices (cache ratio).

6 (a) and (b) demonstrate that training with a larger batch size is
bene!cial for GNNs in terms of achieving better GPU utilization.
Although this consumes more GPU memory, it results in faster
execution. The results in Figure 6 (c) reveal that a larger cache ratio
results in a linear transfer reduction of features in the gathering step.
However, when increasing the batch size from 128 to 4096, the ratio
of cached vertices is decreased from 0.37 to 0.05 due to insu"cient
GPU memory, which results in numerous cache misses. Moreover,
as the graph topology data and feature dimensions increase, the
bene!ts brought by caching vertices will further diminish.
Case 4: Placing sampling and gathering on the GPU su!ers
from GPU memory and resource contention We show an
example of this case in Figure 4 (d). When all steps of sample-based
GNN training are executed on the GPU, it results in GPU contention
and CPU idle. The reasons for this situation have been discussed
in cases 2 and 3. Firstly, the computation kernels of sampling and
training compete for the limited GPU cores, leading to a slowdown
in both. Secondly, the batch data for training and cache data for

gathering contend with the limited GPU memory. When further
making the GPU responsible for the sampling step, the GPU needs
to additionally hold the graph topology data, which can make the
GPU memory contention worse.

3.2 Summary
We conduct experimental analysis on di#erent task orchestrating
methods in GPU-CPU heterogeneous environments. Our obser-
vations reveal that step-based task orchestrating leads to an im-
balanced allocation of computational and memory resources. As-
signing two or more steps to the GPU may result in memory or
GPU resource contention. On the other hand, assigning one or two
steps to the CPU may cause ine"cient CPU processing to become
a bottleneck. A well-designed CPU-GPU heterogeneous system
should ensure adequate and balanced CPU and GPU utilization to
achieve optimal performance. However, the step-based task orches-
trating methods fail to achieve this. This motivates us to design a
resource-balanced task orchestrating method.

4 NEUTRONORCH
We propose NeutronOrch, a sample-based GNN training system
that e#ectively improves CPU and GPU resource utilization through
two critical techniques.
Hotness-aware layer-based task Orchestrating. Unlike step-
based task orchestratingmethods, NeutronOrch decouples the train-
ing process by layers rather than steps and employs the sample-
gather-train computation of each sub-task to a single device, elimi-
nating the constraint of computing each step entirely on the CPU
or GPU. To prevent CPU computation from becoming a bottleneck,
NeutronOrch allows the CPU to compute embeddings only for the
hot vertices that are frequently accessed. Moreover, NeutronOrch
extends stale synchronous processing [12] to guarantee bounded
staleness of embedding reuse, thereby guaranteeing !nal accuracy.
Super-batch pipelined training. Concurrently executing sub-
tasks deployed on the GPU and CPU is essential to achieve high
performance. However, it is challenging for layer-based task orches-
trating because of the cross-layer data dependencies between the
CPU and GPU training process. To solve this, we propose a super-
batch pipelined training. In each super-batch, the CPU and GPU
execute sub-tasks concurrently and independently of each other so
that the training process is fully pipelined. In addition, this pipeline
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6 (a) and (b) demonstrate that training with a larger batch size is
bene!cial for GNNs in terms of achieving better GPU utilization.
Although this consumes more GPU memory, it results in faster
execution. The results in Figure 6 (c) reveal that a larger cache ratio
results in a linear transfer reduction of features in the gathering step.
However, when increasing the batch size from 128 to 4096, the ratio
of cached vertices is decreased from 0.37 to 0.05 due to insu"cient
GPU memory, which results in numerous cache misses. Moreover,
as the graph topology data and feature dimensions increase, the
bene!ts brought by caching vertices will further diminish.
Case 4: Placing sampling and gathering on the GPU su!ers
from GPU memory and resource contention We show an
example of this case in Figure 4 (d). When all steps of sample-based
GNN training are executed on the GPU, it results in GPU contention
and CPU idle. The reasons for this situation have been discussed
in cases 2 and 3. Firstly, the computation kernels of sampling and
training compete for the limited GPU cores, leading to a slowdown
in both. Secondly, the batch data for training and cache data for

gathering contend with the limited GPU memory. When further
making the GPU responsible for the sampling step, the GPU needs
to additionally hold the graph topology data, which can make the
GPU memory contention worse.

3.2 Summary
We conduct experimental analysis on di#erent task orchestrating
methods in GPU-CPU heterogeneous environments. Our obser-
vations reveal that step-based task orchestrating leads to an im-
balanced allocation of computational and memory resources. As-
signing two or more steps to the GPU may result in memory or
GPU resource contention. On the other hand, assigning one or two
steps to the CPU may cause ine"cient CPU processing to become
a bottleneck. A well-designed CPU-GPU heterogeneous system
should ensure adequate and balanced CPU and GPU utilization to
achieve optimal performance. However, the step-based task orches-
trating methods fail to achieve this. This motivates us to design a
resource-balanced task orchestrating method.

4 NEUTRONORCH
We propose NeutronOrch, a sample-based GNN training system
that e#ectively improves CPU and GPU resource utilization through
two critical techniques.
Hotness-aware layer-based task Orchestrating. Unlike step-
based task orchestratingmethods, NeutronOrch decouples the train-
ing process by layers rather than steps and employs the sample-
gather-train computation of each sub-task to a single device, elimi-
nating the constraint of computing each step entirely on the CPU
or GPU. To prevent CPU computation from becoming a bottleneck,
NeutronOrch allows the CPU to compute embeddings only for the
hot vertices that are frequently accessed. Moreover, NeutronOrch
extends stale synchronous processing [12] to guarantee bounded
staleness of embedding reuse, thereby guaranteeing !nal accuracy.
Super-batch pipelined training. Concurrently executing sub-
tasks deployed on the GPU and CPU is essential to achieve high
performance. However, it is challenging for layer-based task orches-
trating because of the cross-layer data dependencies between the
CPU and GPU training process. To solve this, we propose a super-
batch pipelined training. In each super-batch, the CPU and GPU
execute sub-tasks concurrently and independently of each other so
that the training process is fully pipelined. In addition, this pipeline
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• Hotness-aware sampling across batches on CPU

• Constrain staleness within super-batch
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Figure 8: An illustrative example of super-batch pipelined training.

Bounded Staleness. Model parameters are updated once within
each batch, so we record the model parameter version by batch
number. The CPU trains hot vertices in order of hotness and utilizes
the latest model parameters. As shown in Figure 8 (b), during the
!rst super-batch, the embeddings for hot vertices in the CPU may
have versions ranging from 0 to 𝐿 → 1, where 𝐿 is the number of
batches contained within a super-batch. In the second super-batch,
when the GPU pulls embeddings for hot vertices from the CPU, it
may receive historical embeddings with model parameters that are
older than the current version. The CPU must complete the embed-
dings update for hot vertices for the next super-batch within the
current super-batch. This constraint ensures that the version gap
remains within two super-batches, e"ectively preventing excessive
staleness. Figure 8 (b) illustrates that the most signi!cant version
gap may occur in the last batch of the second super-batch. During
this batch, the model parameter version is (𝑀 + 2) · 𝐿 → 1, and it
may utilize historical embeddings from the previous super-batch
with a model parameter version of 𝑀 · 𝐿. For the other batches, the
version gap between historical embeddings and exact embeddings
is smaller than the upper bound of 2𝐿 → 1.

4.3 Convergence Analysis
In this section, we provide a theoretical analysis of convergence
guarantees for NeutronOrch. Bounded staleness has been widely
used by machine learning systems [6, 12, 30, 33, 52], and we present
the theoretical analysis referring to the SANCUS [33] and VR-GCN
[6]. To ensure bounded staleness, NeutronOrch designs super-batch
pipelined training to limit the version (batch number) bound to 2𝐿,
where 𝐿 is the number of batches in a super-batch. In this process,
we monitor the model weight variation between adjacent super-
batches, and the maximum model weight variation 𝑁 that can be
tolerated be de!ned as 𝑁 = 𝑂𝑃𝑄 ↑

!!𝑅 !! ↓ 2𝐿, where 𝑂𝑃𝑄 ↑
!!𝑅 !!

denotes the maximum value variation of 𝑅 in a model weight
update. With this staleness bound, we deduce the convergence
guarantee as follows.
• Proposition 1 provides the necessary and fundamental inequal-

ity operations required for the theoretical analysis;
• Lemma 1 states that by imposing bounded staleness on the

weights, the approximations of the embeddings and intermediate
matrix results are close to the exact results;

• Lemma 2 further demonstrates that the approximations of gra-
dients in the training process closely match the exact gradients;

• Theorem 1 concludes that the weight changes during training
occur at a su#ciently slow rate, ensuring that the gradients are
asymptotically unbiased and guaranteeing convergence;
Proposition 1. Let

!!𝐿!!↔ =𝑀𝑁𝑂𝐿 𝑀
""𝐿𝐿 𝑀

"", then we have:
!!𝐿𝑃!!↔ ↗ 𝑄𝑅𝑆 (𝐿)

!!𝐿!!↔ !!𝑃!!↔!!𝐿 ↘ 𝑃
!!
↔ ↗

!!𝐿!!↔ !!𝑃!!↔!!𝐿 + 𝑃
!!
↔ ↗

!!𝐿!!↔ +
!!𝑃!!↔

where, 𝑆𝑇𝑈 (𝑉) denotes the number of columns of the matrix 𝑉, ↘
denotes the element wise product. This proposition has been proved
by VR-GCN [6], and we omit the proof. We further denote 𝑊 as the
maximum number of columns that exist in our analysis.

Lemma 1, lemma 2, and Theorem 1 have also been proved by
SANCUS [33] and VR-GCN [6], and we omit the proof and give the
necessary and su#cient conditions for their establishment.

lemma 1. Assume all the activations are 𝑋-Lipschitz, the
!!𝑅𝑇

!!
↔

and
!!𝑉𝑇

!!
↔ are bounded by some constant 𝑌, and the historical weights

�̃�𝑇 are close to the exact weights𝑅𝑇 with the staleness bound 𝑁 where!!�̃�𝑇 →𝑅𝑇
!! ↗ 𝑁 , ≃𝑀 . Then the approximation error of the stale em-

bedding �̃� and stale activation 𝑎 is bounded by some constant 𝑏
that depends on 𝑋,𝑊,𝑌:

!!𝑍 𝑆
𝑇 → �̃� 𝑆

𝑇

!!
↔ < 𝑁𝑏 , ≃𝑀 > 𝑐 , 𝑈 = 1, ..., 𝑑 → 1;!!𝑎 𝑆

𝑇 → 𝑎 𝑆
𝑇

!!
↔ < 𝑁𝑏 , ≃𝑀 > 𝑐 , 𝑈 = 1, ..., 𝑑.

lemma 2. Assume that activation function 𝑒 (·) and the gradient
⇐L are 𝑋 → 𝑑𝑀𝑓𝑔𝑆𝑀𝑖𝑗, the

!!⇐L!!
↔,

!!𝑉𝑇
!!
↔,

!!𝑅𝑇
!!
↔, and

!!𝑒⇒ (𝑎𝑇 )!!↔
are bounded by some constant 𝑌, and the historical weights �̃�𝑇 are
close to the exact weights𝑅𝑇 with the staleness bound 𝑁 where

!!�̃�𝑇 →𝑅𝑇
!!

↗ 𝑁 ,≃𝑀 . Then the approximation error of the gradient 𝑘(𝑅𝑇 ) is bounded
by some contents:

!!E𝑘(𝑅𝑇 ) → ⇐L(𝑅𝑇 )
!!
↔ ↗ 𝑁𝑏 and ≃𝑀 > 𝑐 , where K

depends on 𝑋,𝑊,𝑌.
Theorem 1. Given the local minimizer 𝑅𝐿. Assume that (1)

the activation 𝑒 (·) is 𝑋-Lipschitz, (2) the gradient of the loss func-
tion ⇐L(𝑅𝑇 ) is 𝑋-Lipschitz and bounded, (3) The gradient matrices!!𝑘(𝑅 )

!!
↔,

!!𝑘(𝑅 )
!!
↔ and

!!⇐L(𝑅 )
!!
↔ are bounded by some constant

𝑙 > 0. (4) The loss L(𝑅 ) is 𝑋-smooth, i.e.,

| L (𝑈2 ) → L(𝑈1 ) → ⇑⇐L(𝑈1 ),𝑈2 →𝑈1 ⇓ | ↗
𝑉

2
!!𝑈2 →𝑈1

!!2
𝑁 , ≃𝑈1,𝑈2

, where ⇑𝑉,𝑌⇓ = 𝑖𝑚 (𝑉𝑊𝑌) is the inner product of matrix𝑉 and matrix
𝑌. Then, there exists 𝑏 > 0, s.t., ≃𝑛 > 𝑐 , if we run SGD for 𝑜 ↗ 𝑛
iterations, where R is chosen uniformly from [𝑐 + 1, ...,𝑛 ] and the
learning rate 𝑝 =𝑂𝑀𝐿{ 1𝑉 , 1⇔

𝑋
}, , we have:

E𝑂 ↖⇐L(𝑈𝑂 ) ↖2𝑁 ↗ 2
L(𝑈1 ) → L(𝑈𝐿) + 𝑃𝑄

2⇔
𝑋

when 𝑛 ↙ ↔ , E𝑌 ↖⇐L(𝑅𝑌)↖2𝑍 ↙ 0, the above concludes that the
convergence is guaranteed.

5 EVALUATION
This section evaluates the performance of NeutronOrch using three
representative GNN models and six real-world graph datasets.

5.1 Experimental Setup
Environments. The experiments are conducted on an Aliyun
server equipped with an Intel Xeon Platinum 8163 CPU (96 cores
and 736 GB main memory) and eight NVIDIA V100 (16GB) GPUs.
The eight GPUs are connected to the CPU via four PCIe-3.0 switches
and equipped with NVLink interconnects similar to NVIDIA DGX-
1 [32]. The GPU is enabled with CUDA 11.4 runtime and 418.67
drivers. The serversruns Ubuntu 18.04 with Linux kernel 4.13.0.
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Figure 8: An illustrative example of super-batch pipelined training.

Bounded Staleness. Model parameters are updated once within
each batch, so we record the model parameter version by batch
number. The CPU trains hot vertices in order of hotness and utilizes
the latest model parameters. As shown in Figure 8 (b), during the
!rst super-batch, the embeddings for hot vertices in the CPU may
have versions ranging from 0 to 𝐿 → 1, where 𝐿 is the number of
batches contained within a super-batch. In the second super-batch,
when the GPU pulls embeddings for hot vertices from the CPU, it
may receive historical embeddings with model parameters that are
older than the current version. The CPU must complete the embed-
dings update for hot vertices for the next super-batch within the
current super-batch. This constraint ensures that the version gap
remains within two super-batches, e"ectively preventing excessive
staleness. Figure 8 (b) illustrates that the most signi!cant version
gap may occur in the last batch of the second super-batch. During
this batch, the model parameter version is (𝑀 + 2) · 𝐿 → 1, and it
may utilize historical embeddings from the previous super-batch
with a model parameter version of 𝑀 · 𝐿. For the other batches, the
version gap between historical embeddings and exact embeddings
is smaller than the upper bound of 2𝐿 → 1.

4.3 Convergence Analysis
In this section, we provide a theoretical analysis of convergence
guarantees for NeutronOrch. Bounded staleness has been widely
used by machine learning systems [6, 12, 30, 33, 52], and we present
the theoretical analysis referring to the SANCUS [33] and VR-GCN
[6]. To ensure bounded staleness, NeutronOrch designs super-batch
pipelined training to limit the version (batch number) bound to 2𝐿,
where 𝐿 is the number of batches in a super-batch. In this process,
we monitor the model weight variation between adjacent super-
batches, and the maximum model weight variation 𝑁 that can be
tolerated be de!ned as 𝑁 = 𝑂𝑃𝑄 ↑

!!𝑅 !! ↓ 2𝐿, where 𝑂𝑃𝑄 ↑
!!𝑅 !!

denotes the maximum value variation of 𝑅 in a model weight
update. With this staleness bound, we deduce the convergence
guarantee as follows.
• Proposition 1 provides the necessary and fundamental inequal-

ity operations required for the theoretical analysis;
• Lemma 1 states that by imposing bounded staleness on the

weights, the approximations of the embeddings and intermediate
matrix results are close to the exact results;

• Lemma 2 further demonstrates that the approximations of gra-
dients in the training process closely match the exact gradients;

• Theorem 1 concludes that the weight changes during training
occur at a su#ciently slow rate, ensuring that the gradients are
asymptotically unbiased and guaranteeing convergence;
Proposition 1. Let

!!𝐿!!↔ =𝑀𝑁𝑂𝐿 𝑀
""𝐿𝐿 𝑀

"", then we have:
!!𝐿𝑃!!↔ ↗ 𝑄𝑅𝑆 (𝐿)

!!𝐿!!↔ !!𝑃!!↔!!𝐿 ↘ 𝑃
!!
↔ ↗

!!𝐿!!↔ !!𝑃!!↔!!𝐿 + 𝑃
!!
↔ ↗

!!𝐿!!↔ +
!!𝑃!!↔

where, 𝑆𝑇𝑈 (𝑉) denotes the number of columns of the matrix 𝑉, ↘
denotes the element wise product. This proposition has been proved
by VR-GCN [6], and we omit the proof. We further denote 𝑊 as the
maximum number of columns that exist in our analysis.

Lemma 1, lemma 2, and Theorem 1 have also been proved by
SANCUS [33] and VR-GCN [6], and we omit the proof and give the
necessary and su#cient conditions for their establishment.

lemma 1. Assume all the activations are 𝑋-Lipschitz, the
!!𝑅𝑇
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↔

and
!!𝑉𝑇

!!
↔ are bounded by some constant 𝑌, and the historical weights

�̃�𝑇 are close to the exact weights𝑅𝑇 with the staleness bound 𝑁 where!!�̃�𝑇 →𝑅𝑇
!! ↗ 𝑁 , ≃𝑀 . Then the approximation error of the stale em-

bedding �̃� and stale activation 𝑎 is bounded by some constant 𝑏
that depends on 𝑋,𝑊,𝑌:

!!𝑍 𝑆
𝑇 → �̃� 𝑆

𝑇
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↔ < 𝑁𝑏 , ≃𝑀 > 𝑐 , 𝑈 = 1, ..., 𝑑 → 1;!!𝑎 𝑆

𝑇 → 𝑎 𝑆
𝑇

!!
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lemma 2. Assume that activation function 𝑒 (·) and the gradient
⇐L are 𝑋 → 𝑑𝑀𝑓𝑔𝑆𝑀𝑖𝑗, the
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↔, and
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are bounded by some constant 𝑌, and the historical weights �̃�𝑇 are
close to the exact weights𝑅𝑇 with the staleness bound 𝑁 where
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!!

↗ 𝑁 ,≃𝑀 . Then the approximation error of the gradient 𝑘(𝑅𝑇 ) is bounded
by some contents:

!!E𝑘(𝑅𝑇 ) → ⇐L(𝑅𝑇 )
!!
↔ ↗ 𝑁𝑏 and ≃𝑀 > 𝑐 , where K

depends on 𝑋,𝑊,𝑌.
Theorem 1. Given the local minimizer 𝑅𝐿. Assume that (1)

the activation 𝑒 (·) is 𝑋-Lipschitz, (2) the gradient of the loss func-
tion ⇐L(𝑅𝑇 ) is 𝑋-Lipschitz and bounded, (3) The gradient matrices!!𝑘(𝑅 )

!!
↔,

!!𝑘(𝑅 )
!!
↔ and

!!⇐L(𝑅 )
!!
↔ are bounded by some constant

𝑙 > 0. (4) The loss L(𝑅 ) is 𝑋-smooth, i.e.,

| L (𝑈2 ) → L(𝑈1 ) → ⇑⇐L(𝑈1 ),𝑈2 →𝑈1 ⇓ | ↗
𝑉
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!!𝑈2 →𝑈1
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, where ⇑𝑉,𝑌⇓ = 𝑖𝑚 (𝑉𝑊𝑌) is the inner product of matrix𝑉 and matrix
𝑌. Then, there exists 𝑏 > 0, s.t., ≃𝑛 > 𝑐 , if we run SGD for 𝑜 ↗ 𝑛
iterations, where R is chosen uniformly from [𝑐 + 1, ...,𝑛 ] and the
learning rate 𝑝 =𝑂𝑀𝐿{ 1𝑉 , 1⇔

𝑋
}, , we have:

E𝑂 ↖⇐L(𝑈𝑂 ) ↖2𝑁 ↗ 2
L(𝑈1 ) → L(𝑈𝐿) + 𝑃𝑄

2⇔
𝑋

when 𝑛 ↙ ↔ , E𝑌 ↖⇐L(𝑅𝑌)↖2𝑍 ↙ 0, the above concludes that the
convergence is guaranteed.

5 EVALUATION
This section evaluates the performance of NeutronOrch using three
representative GNN models and six real-world graph datasets.

5.1 Experimental Setup
Environments. The experiments are conducted on an Aliyun
server equipped with an Intel Xeon Platinum 8163 CPU (96 cores
and 736 GB main memory) and eight NVIDIA V100 (16GB) GPUs.
The eight GPUs are connected to the CPU via four PCIe-3.0 switches
and equipped with NVLink interconnects similar to NVIDIA DGX-
1 [32]. The GPU is enabled with CUDA 11.4 runtime and 418.67
drivers. The serversruns Ubuntu 18.04 with Linux kernel 4.13.0.
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Figure 8: An illustrative example of super-batch pipelined training.

Bounded Staleness. Model parameters are updated once within
each batch, so we record the model parameter version by batch
number. The CPU trains hot vertices in order of hotness and utilizes
the latest model parameters. As shown in Figure 8 (b), during the
!rst super-batch, the embeddings for hot vertices in the CPU may
have versions ranging from 0 to 𝐿 → 1, where 𝐿 is the number of
batches contained within a super-batch. In the second super-batch,
when the GPU pulls embeddings for hot vertices from the CPU, it
may receive historical embeddings with model parameters that are
older than the current version. The CPU must complete the embed-
dings update for hot vertices for the next super-batch within the
current super-batch. This constraint ensures that the version gap
remains within two super-batches, e"ectively preventing excessive
staleness. Figure 8 (b) illustrates that the most signi!cant version
gap may occur in the last batch of the second super-batch. During
this batch, the model parameter version is (𝑀 + 2) · 𝐿 → 1, and it
may utilize historical embeddings from the previous super-batch
with a model parameter version of 𝑀 · 𝐿. For the other batches, the
version gap between historical embeddings and exact embeddings
is smaller than the upper bound of 2𝐿 → 1.

4.3 Convergence Analysis
In this section, we provide a theoretical analysis of convergence
guarantees for NeutronOrch. Bounded staleness has been widely
used by machine learning systems [6, 12, 30, 33, 52], and we present
the theoretical analysis referring to the SANCUS [33] and VR-GCN
[6]. To ensure bounded staleness, NeutronOrch designs super-batch
pipelined training to limit the version (batch number) bound to 2𝐿,
where 𝐿 is the number of batches in a super-batch. In this process,
we monitor the model weight variation between adjacent super-
batches, and the maximum model weight variation 𝑁 that can be
tolerated be de!ned as 𝑁 = 𝑂𝑃𝑄 ↑

!!𝑅 !! ↓ 2𝐿, where 𝑂𝑃𝑄 ↑
!!𝑅 !!

denotes the maximum value variation of 𝑅 in a model weight
update. With this staleness bound, we deduce the convergence
guarantee as follows.
• Proposition 1 provides the necessary and fundamental inequal-

ity operations required for the theoretical analysis;
• Lemma 1 states that by imposing bounded staleness on the

weights, the approximations of the embeddings and intermediate
matrix results are close to the exact results;

• Lemma 2 further demonstrates that the approximations of gra-
dients in the training process closely match the exact gradients;

• Theorem 1 concludes that the weight changes during training
occur at a su#ciently slow rate, ensuring that the gradients are
asymptotically unbiased and guaranteeing convergence;
Proposition 1. Let

!!𝐿!!↔ =𝑀𝑁𝑂𝐿 𝑀
""𝐿𝐿 𝑀

"", then we have:
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where, 𝑆𝑇𝑈 (𝑉) denotes the number of columns of the matrix 𝑉, ↘
denotes the element wise product. This proposition has been proved
by VR-GCN [6], and we omit the proof. We further denote 𝑊 as the
maximum number of columns that exist in our analysis.

Lemma 1, lemma 2, and Theorem 1 have also been proved by
SANCUS [33] and VR-GCN [6], and we omit the proof and give the
necessary and su#cient conditions for their establishment.

lemma 1. Assume all the activations are 𝑋-Lipschitz, the
!!𝑅𝑇
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↔

and
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↔ are bounded by some constant 𝑌, and the historical weights

�̃�𝑇 are close to the exact weights𝑅𝑇 with the staleness bound 𝑁 where!!�̃�𝑇 →𝑅𝑇
!! ↗ 𝑁 , ≃𝑀 . Then the approximation error of the stale em-

bedding �̃� and stale activation 𝑎 is bounded by some constant 𝑏
that depends on 𝑋,𝑊,𝑌:
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lemma 2. Assume that activation function 𝑒 (·) and the gradient
⇐L are 𝑋 → 𝑑𝑀𝑓𝑔𝑆𝑀𝑖𝑗, the
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are bounded by some constant 𝑌, and the historical weights �̃�𝑇 are
close to the exact weights𝑅𝑇 with the staleness bound 𝑁 where
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↗ 𝑁 ,≃𝑀 . Then the approximation error of the gradient 𝑘(𝑅𝑇 ) is bounded
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!!E𝑘(𝑅𝑇 ) → ⇐L(𝑅𝑇 )
!!
↔ ↗ 𝑁𝑏 and ≃𝑀 > 𝑐 , where K

depends on 𝑋,𝑊,𝑌.
Theorem 1. Given the local minimizer 𝑅𝐿. Assume that (1)

the activation 𝑒 (·) is 𝑋-Lipschitz, (2) the gradient of the loss func-
tion ⇐L(𝑅𝑇 ) is 𝑋-Lipschitz and bounded, (3) The gradient matrices!!𝑘(𝑅 )
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↔ and
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𝑙 > 0. (4) The loss L(𝑅 ) is 𝑋-smooth, i.e.,
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, where ⇑𝑉,𝑌⇓ = 𝑖𝑚 (𝑉𝑊𝑌) is the inner product of matrix𝑉 and matrix
𝑌. Then, there exists 𝑏 > 0, s.t., ≃𝑛 > 𝑐 , if we run SGD for 𝑜 ↗ 𝑛
iterations, where R is chosen uniformly from [𝑐 + 1, ...,𝑛 ] and the
learning rate 𝑝 =𝑂𝑀𝐿{ 1𝑉 , 1⇔

𝑋
}, , we have:

E𝑂 ↖⇐L(𝑈𝑂 ) ↖2𝑁 ↗ 2
L(𝑈1 ) → L(𝑈𝐿) + 𝑃𝑄
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when 𝑛 ↙ ↔ , E𝑌 ↖⇐L(𝑅𝑌)↖2𝑍 ↙ 0, the above concludes that the
convergence is guaranteed.

5 EVALUATION
This section evaluates the performance of NeutronOrch using three
representative GNN models and six real-world graph datasets.

5.1 Experimental Setup
Environments. The experiments are conducted on an Aliyun
server equipped with an Intel Xeon Platinum 8163 CPU (96 cores
and 736 GB main memory) and eight NVIDIA V100 (16GB) GPUs.
The eight GPUs are connected to the CPU via four PCIe-3.0 switches
and equipped with NVLink interconnects similar to NVIDIA DGX-
1 [32]. The GPU is enabled with CUDA 11.4 runtime and 418.67
drivers. The serversruns Ubuntu 18.04 with Linux kernel 4.13.0.
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Figure 1: The overview of DAHA with three novel modules: (1) group-based in-turn pipelining; (2) intra-batch execution plan
graph (EPG) rewriting; and (3) inter-batch scheduling. Module 1 sets the overall pipeline style of DAHA with interleaving
sampling and training stages. Module 2 decides the search space for module 3 to optimize for accelerating the training stage.

operations. Hence, they miss optimization opportunities for more
!ne-grained pipeline parallelism.

To conclude, we identify the research gap of failure to explore all
possible combinations of device utilization patterns on !ne-grained
sets of operations, hence missing opportunities for the combinato-
rial optimization problem of !nding the optimal execution plan. We
aim to !ll the gap by expanding the e"ciency optimization search
space to fully hybrid CPU-GPU, where each !ne-grained operation
of a batch can reside on any feasible device, to !nd the optimal
execution plan based on the input data and hardware like [30].

To begin with, we need to answer a fundamental question, what
operation and data are suitable for what device? Although it is
often assumed that GPU training is faster than CPU, we !nd GPUs
might be worse when the GPU speedup of computation cannot
o#set the additional data transfer cost. To answer the question,
a quantitative cost model is needed to estimate the time of an
operation on arbitrary input data and devices. We build a data and
hardware aware cost model for both data transfer and major GNN
operations, which takes the input of the graph property and model
speci!cations to output the expected training e"ciency based on
the available hardware.

Based on the cost model, we present DAHA, a GNN training
framework with data and hardware aware execution planning to
accelerate end-to-end GNN training. The overview of DAHA is
illustrated in Figure 1. DAHA consists of three modules all guided
by the data and hardware aware cost model. They are designed for
fully hybrid CPU-GPU pipeline parallelism to leverage the hardware
resources e"ciently. The three modules are: (1) group-based in-turn
pipelining; (2) intra-batch execution plan graph (EPG) rewriting;
and (3) inter-batch scheduling. When GNN training starts, we !rst
apply the group-based in-turn pipelining strategy, where DAHA
in turn pipelines the sampling stage !rst and then switches to the
model training stage. The idea is to group tasks with similar patterns
of data access and device utilization to increase data and device
a"nity, amortizing the cost of memory access and kernel launching.
It prevents slow samplers from blocking trainers because samplers

are pipelined together followed by the pipeline of trainers. With
group-based in-turn pipelining, DAHA goes fully hybrid CPU-GPU
on sampling and training stages, diversifying the device utilization
pattern for more optimization opportunities. DAHA also performs
adaptive shu$ing and progressive scheduling to e"ciently pipeline
the sampling stage. After the sampling stage, DAHA applies the
intra-batch EPG rewriting and inter-batch scheduling optimizations
to accelerate the training stage at a !ne-grained operation level with
more optimization opportunities. The cost model helps estimate
the makespan of each operation to !nd the optimal execution plan.
To this end, we present the comparison of DAHA to literature in
Table 1 to illustrate how DAHA identi!es and !lls the research gap.

In summary, we make the following contributions in this paper:
(1) Problem exploration. We identify the gap of device utiliza-
tion pattern and hardware selection problem in GNN training and
provide a new perspective to accelerate GNN training with fully
hybrid CPU-GPU pipeline parallelism. (2) Data and hardware
aware cost model. We provide a data and hardware aware cost
model to estimate the time cost of an operation to automatically
help schedule the input (sub)graphs on the available hardware. (3)
GNN training framework with novel execution planning. We
separate the sampling stage and neural training stage and pipeline
them independently to increase data and device a"nity, amortizing
the cost of memory access and kernel launching and preventing
sampling from blocking training. Based on this design which opens
up more pipeline parallelism opportunities, we propose a series
of novel intra-batch and inter-batch execution planning strategies
to accelerate GNN training in the hybrid CPU-GPU setting. (4)
Remarkable performance.We perform extensive experiments
to evaluate DAHA to show its signi!cant speedup and ability to
generalize to di#erent data and message-passing GNNs.

The outline of the paper is as follows. Problem statement is in
Section 2. Section 3 covers the detailed description of DAHA and
its modules. We present the experimental results in Section 4 and
related works in Section 5. Section 6 concludes the paper.

1365

CPU
o Feature processing
o Weight transformation
o Major sampling

GPU
o Accelerate sampling
o Graph aggregation



Computation: DAHA [VLDB’24]

• Fast feature processing (dense MM)

• Long data transfer

Hardware-aware Sampling

Z Li et al, "DAHA: Accelerating GNN Training with Data 
and Hardware Aware Execution Planning", VLDB’24. 

A
to GPU

H
to GPU

W
to GPU

T = AH
(GPU)

Z = TW
(GPU)

A
(input)

H
(input)

W
(input)

(a) EPG: pure GPU.

A
to GPU

T = HW
(CPU)

Z = AT
(GPU)

A
(input)

H
(input)

W
(input)

T
to GPU

(b) EPG: HybridPU.

A H W

T=AH Z=TW

PCIE

GPU

CPU
Time

(c) Device: pure GPU.

A

Z=AT

T=HW

TPCIE

GPU

CPU
Time

(d) Device: HybridPU.

Figure 4: Pure GPU vs HybridPU.

the mm !nishes, it transfers the mm output to GPU for the spmm
of 𝐿 = 𝑀𝑁 to follow. Since the neural transformation involving the
weight matrix𝑂 is performed on CPU ahead of others, we call it
the pre-transformation rewriting rule. The advantages of such
a HybridPU strategy are twofold. Firstly, it renders more oppor-
tunity for pipeline parallelism. As shown in Figure 4d, although
the execution of the mm operation is slower on CPU than GPU, it
can be well pipelined with CPU-GPU data transfer of 𝑀, hiding the
communication cost behind the computation cost. Secondly, not
only the number of operations but also the communication volume
is reduced. The reason is that the pre-transformation on CPU just
needs to transfer the mm output to GPU instead of the two input
matrices and the size of the mm output 𝑁 = 𝑃0𝑂 0 is often smaller
than the input feature matrix 𝑃0 since the hidden dimension is
typically smaller than the feature dimension. As a result, the pre-
transformation rewriting rule serves as a quality candidate. The
pre-transformation is especially e"ective for forward propagation.
Hence, it also helps accelerate inference.

Another candidate performs the spmm of 𝑁 = 𝑀𝑃 on CPU
followed by the mm 𝐿 = 𝑁𝑂 on GPU, which we call the pre-
aggregation rewriting rule. Pre-aggregation is typically outper-
formed by pre-transformation if we only consider the execution of a
single batch or sequential execution of multiple batches. The reason
is that pre-aggregation performs the more computation-intensive
spmm operation on CPU while GPU speedup for spmm is typically
muchmore signi!cant than mm, as shown later in Table 6. However,

when we consider scheduling and pipelining multiple batches later,
various rewritten EPGs can be useful in di"erent cases because
di"erent resources can be idle at di"erent periods. For example,
in Figure 4d, after the mm 𝑁 = 𝑃𝑂 on CPU of batch 1 !nishes,
batch 2 can use pre-aggregation so the spmm 𝑁 = 𝑀𝑃 of batch 2
can continue on CPU without waiting for gradient update.

To decide whether a rewriting rule should be adopted and how
much acceleration is expected, DAHA leverages the batch statistics
and our data and hardware aware cost model to estimate the time
cost. Notably, this intra-batch level optimization can be applied to
full-graph training like GCN since the full-graph could be regarded
as a batch. This concludes the data and hardware aware intra-batch
EPG rewriting module of DAHA.

3.2.3 Inter-batch scheduling optimizations. DAHA combines its
intra-batch optimization with inter-batch scheduling to boost de-
vice utilization and improve end-to-end training e#ciency.

Problem formulation. Given a set of batches, available CPU
workers, GPU workers, and PCIE bandwidth for CPU-GPU data
transfer. Each batch consists of a series of dependent operations
that can be processed in any order if the dependency is not broken.
Each computation operation in a batch can be processed on any
CPU or GPU worker. Each communication operation consumes the
PCIE bandwidth. Given the per-operation estimates from the cost
model, our goal is to determine the schedule of the operations on
the available hardware that yields the minimum makespan.

This formulation takes into consideration the intra-batch EPG
rewriting as well because the intra-batch operations can take place
in an arbitrary order that does not break the dependency. Thus, the
inter-batch scheduling optimizations of DAHA naturally inherit
the bene!ts of its intra-batch strategies. Besides, there is few risk of
GPU waiting due to synchronization because DAHA can automat-
ically allocate the idle GPU resources to suitable operations and
bounded staleness is applied for more pipeline opportunities.

Hardness of the problem. DAHA’s scheduling problem can be
reduced from a variant of the $exible job-shop scheduling problem
(FJSP) which is NP-Hard [2]. The inputs to FJSP are a set of jobs
and a set of machines. Each job consists of a sequence of opera-
tions processed in such an order that one precedes another. Each
operation can be processed on any machine of a given type and
the duration is known. The goal of the problem is to determine the
schedule that gives the minimum makespan. It is well known that
FJSP is not only NP-Hard but also intractable as it is considered one
of the most computationally stubborn problems [2] and existing
approximation solutions might also fail to have a logarithmic per-
formance guarantee [3, 11]. The possibly many intra-batch EPGs
further add to the hardness of the problem.

Proof of hardness.We prove that FJSP is reducible to our prob-
lem. Consider a FJSP with three input machines namely CPU, PCIE,
and GPU. Each job consists of three operations, CPU computation,
PCIE communication and GPU computation. These three opera-
tions should be processed in the above order on the stated machine.
Then if there exists an solution to DAHA’s inter-batch scheduling
problem, then we can just !x the intra-batch EPG as CPU-PCIE-
GPU and give the scheduling plan. This will minimize the FJSP’s
makespan as well. This !nishes the proof.
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Figure 4: Pure GPU vs HybridPU.

the mm !nishes, it transfers the mm output to GPU for the spmm
of 𝐿 = 𝑀𝑁 to follow. Since the neural transformation involving the
weight matrix𝑂 is performed on CPU ahead of others, we call it
the pre-transformation rewriting rule. The advantages of such
a HybridPU strategy are twofold. Firstly, it renders more oppor-
tunity for pipeline parallelism. As shown in Figure 4d, although
the execution of the mm operation is slower on CPU than GPU, it
can be well pipelined with CPU-GPU data transfer of 𝑀, hiding the
communication cost behind the computation cost. Secondly, not
only the number of operations but also the communication volume
is reduced. The reason is that the pre-transformation on CPU just
needs to transfer the mm output to GPU instead of the two input
matrices and the size of the mm output 𝑁 = 𝑃0𝑂 0 is often smaller
than the input feature matrix 𝑃0 since the hidden dimension is
typically smaller than the feature dimension. As a result, the pre-
transformation rewriting rule serves as a quality candidate. The
pre-transformation is especially e"ective for forward propagation.
Hence, it also helps accelerate inference.

Another candidate performs the spmm of 𝑁 = 𝑀𝑃 on CPU
followed by the mm 𝐿 = 𝑁𝑂 on GPU, which we call the pre-
aggregation rewriting rule. Pre-aggregation is typically outper-
formed by pre-transformation if we only consider the execution of a
single batch or sequential execution of multiple batches. The reason
is that pre-aggregation performs the more computation-intensive
spmm operation on CPU while GPU speedup for spmm is typically
muchmore signi!cant than mm, as shown later in Table 6. However,

when we consider scheduling and pipelining multiple batches later,
various rewritten EPGs can be useful in di"erent cases because
di"erent resources can be idle at di"erent periods. For example,
in Figure 4d, after the mm 𝑁 = 𝑃𝑂 on CPU of batch 1 !nishes,
batch 2 can use pre-aggregation so the spmm 𝑁 = 𝑀𝑃 of batch 2
can continue on CPU without waiting for gradient update.

To decide whether a rewriting rule should be adopted and how
much acceleration is expected, DAHA leverages the batch statistics
and our data and hardware aware cost model to estimate the time
cost. Notably, this intra-batch level optimization can be applied to
full-graph training like GCN since the full-graph could be regarded
as a batch. This concludes the data and hardware aware intra-batch
EPG rewriting module of DAHA.

3.2.3 Inter-batch scheduling optimizations. DAHA combines its
intra-batch optimization with inter-batch scheduling to boost de-
vice utilization and improve end-to-end training e#ciency.

Problem formulation. Given a set of batches, available CPU
workers, GPU workers, and PCIE bandwidth for CPU-GPU data
transfer. Each batch consists of a series of dependent operations
that can be processed in any order if the dependency is not broken.
Each computation operation in a batch can be processed on any
CPU or GPU worker. Each communication operation consumes the
PCIE bandwidth. Given the per-operation estimates from the cost
model, our goal is to determine the schedule of the operations on
the available hardware that yields the minimum makespan.

This formulation takes into consideration the intra-batch EPG
rewriting as well because the intra-batch operations can take place
in an arbitrary order that does not break the dependency. Thus, the
inter-batch scheduling optimizations of DAHA naturally inherit
the bene!ts of its intra-batch strategies. Besides, there is few risk of
GPU waiting due to synchronization because DAHA can automat-
ically allocate the idle GPU resources to suitable operations and
bounded staleness is applied for more pipeline opportunities.

Hardness of the problem. DAHA’s scheduling problem can be
reduced from a variant of the $exible job-shop scheduling problem
(FJSP) which is NP-Hard [2]. The inputs to FJSP are a set of jobs
and a set of machines. Each job consists of a sequence of opera-
tions processed in such an order that one precedes another. Each
operation can be processed on any machine of a given type and
the duration is known. The goal of the problem is to determine the
schedule that gives the minimum makespan. It is well known that
FJSP is not only NP-Hard but also intractable as it is considered one
of the most computationally stubborn problems [2] and existing
approximation solutions might also fail to have a logarithmic per-
formance guarantee [3, 11]. The possibly many intra-batch EPGs
further add to the hardness of the problem.

Proof of hardness.We prove that FJSP is reducible to our prob-
lem. Consider a FJSP with three input machines namely CPU, PCIE,
and GPU. Each job consists of three operations, CPU computation,
PCIE communication and GPU computation. These three opera-
tions should be processed in the above order on the stated machine.
Then if there exists an solution to DAHA’s inter-batch scheduling
problem, then we can just !x the intra-batch EPG as CPU-PCIE-
GPU and give the scheduling plan. This will minimize the FJSP’s
makespan as well. This !nishes the proof.
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Figure 4: Pure GPU vs HybridPU.

the mm !nishes, it transfers the mm output to GPU for the spmm
of 𝐿 = 𝑀𝑁 to follow. Since the neural transformation involving the
weight matrix𝑂 is performed on CPU ahead of others, we call it
the pre-transformation rewriting rule. The advantages of such
a HybridPU strategy are twofold. Firstly, it renders more oppor-
tunity for pipeline parallelism. As shown in Figure 4d, although
the execution of the mm operation is slower on CPU than GPU, it
can be well pipelined with CPU-GPU data transfer of 𝑀, hiding the
communication cost behind the computation cost. Secondly, not
only the number of operations but also the communication volume
is reduced. The reason is that the pre-transformation on CPU just
needs to transfer the mm output to GPU instead of the two input
matrices and the size of the mm output 𝑁 = 𝑃0𝑂 0 is often smaller
than the input feature matrix 𝑃0 since the hidden dimension is
typically smaller than the feature dimension. As a result, the pre-
transformation rewriting rule serves as a quality candidate. The
pre-transformation is especially e"ective for forward propagation.
Hence, it also helps accelerate inference.

Another candidate performs the spmm of 𝑁 = 𝑀𝑃 on CPU
followed by the mm 𝐿 = 𝑁𝑂 on GPU, which we call the pre-
aggregation rewriting rule. Pre-aggregation is typically outper-
formed by pre-transformation if we only consider the execution of a
single batch or sequential execution of multiple batches. The reason
is that pre-aggregation performs the more computation-intensive
spmm operation on CPU while GPU speedup for spmm is typically
muchmore signi!cant than mm, as shown later in Table 6. However,

when we consider scheduling and pipelining multiple batches later,
various rewritten EPGs can be useful in di"erent cases because
di"erent resources can be idle at di"erent periods. For example,
in Figure 4d, after the mm 𝑁 = 𝑃𝑂 on CPU of batch 1 !nishes,
batch 2 can use pre-aggregation so the spmm 𝑁 = 𝑀𝑃 of batch 2
can continue on CPU without waiting for gradient update.

To decide whether a rewriting rule should be adopted and how
much acceleration is expected, DAHA leverages the batch statistics
and our data and hardware aware cost model to estimate the time
cost. Notably, this intra-batch level optimization can be applied to
full-graph training like GCN since the full-graph could be regarded
as a batch. This concludes the data and hardware aware intra-batch
EPG rewriting module of DAHA.

3.2.3 Inter-batch scheduling optimizations. DAHA combines its
intra-batch optimization with inter-batch scheduling to boost de-
vice utilization and improve end-to-end training e#ciency.

Problem formulation. Given a set of batches, available CPU
workers, GPU workers, and PCIE bandwidth for CPU-GPU data
transfer. Each batch consists of a series of dependent operations
that can be processed in any order if the dependency is not broken.
Each computation operation in a batch can be processed on any
CPU or GPU worker. Each communication operation consumes the
PCIE bandwidth. Given the per-operation estimates from the cost
model, our goal is to determine the schedule of the operations on
the available hardware that yields the minimum makespan.

This formulation takes into consideration the intra-batch EPG
rewriting as well because the intra-batch operations can take place
in an arbitrary order that does not break the dependency. Thus, the
inter-batch scheduling optimizations of DAHA naturally inherit
the bene!ts of its intra-batch strategies. Besides, there is few risk of
GPU waiting due to synchronization because DAHA can automat-
ically allocate the idle GPU resources to suitable operations and
bounded staleness is applied for more pipeline opportunities.

Hardness of the problem. DAHA’s scheduling problem can be
reduced from a variant of the $exible job-shop scheduling problem
(FJSP) which is NP-Hard [2]. The inputs to FJSP are a set of jobs
and a set of machines. Each job consists of a sequence of opera-
tions processed in such an order that one precedes another. Each
operation can be processed on any machine of a given type and
the duration is known. The goal of the problem is to determine the
schedule that gives the minimum makespan. It is well known that
FJSP is not only NP-Hard but also intractable as it is considered one
of the most computationally stubborn problems [2] and existing
approximation solutions might also fail to have a logarithmic per-
formance guarantee [3, 11]. The possibly many intra-batch EPGs
further add to the hardness of the problem.

Proof of hardness.We prove that FJSP is reducible to our prob-
lem. Consider a FJSP with three input machines namely CPU, PCIE,
and GPU. Each job consists of three operations, CPU computation,
PCIE communication and GPU computation. These three opera-
tions should be processed in the above order on the stated machine.
Then if there exists an solution to DAHA’s inter-batch scheduling
problem, then we can just !x the intra-batch EPG as CPU-PCIE-
GPU and give the scheduling plan. This will minimize the FJSP’s
makespan as well. This !nishes the proof.

1369

Computation 2: Hybrid GPU

A
to GPU

H
to GPU

W
to GPU

T = AH
(GPU)

Z = TW
(GPU)

A
(input)

H
(input)

W
(input)

(a) EPG: pure GPU.

A
to GPU

T = HW
(CPU)

Z = AT
(GPU)

A
(input)

H
(input)

W
(input)

T
to GPU

(b) EPG: HybridPU.

A H W

T=AH Z=TW

PCIE

GPU

CPU
Time

(c) Device: pure GPU.

A

Z=AT

T=HW

TPCIE

GPU

CPU
Time

(d) Device: HybridPU.

Figure 4: Pure GPU vs HybridPU.

the mm !nishes, it transfers the mm output to GPU for the spmm
of 𝐿 = 𝑀𝑁 to follow. Since the neural transformation involving the
weight matrix𝑂 is performed on CPU ahead of others, we call it
the pre-transformation rewriting rule. The advantages of such
a HybridPU strategy are twofold. Firstly, it renders more oppor-
tunity for pipeline parallelism. As shown in Figure 4d, although
the execution of the mm operation is slower on CPU than GPU, it
can be well pipelined with CPU-GPU data transfer of 𝑀, hiding the
communication cost behind the computation cost. Secondly, not
only the number of operations but also the communication volume
is reduced. The reason is that the pre-transformation on CPU just
needs to transfer the mm output to GPU instead of the two input
matrices and the size of the mm output 𝑁 = 𝑃0𝑂 0 is often smaller
than the input feature matrix 𝑃0 since the hidden dimension is
typically smaller than the feature dimension. As a result, the pre-
transformation rewriting rule serves as a quality candidate. The
pre-transformation is especially e"ective for forward propagation.
Hence, it also helps accelerate inference.

Another candidate performs the spmm of 𝑁 = 𝑀𝑃 on CPU
followed by the mm 𝐿 = 𝑁𝑂 on GPU, which we call the pre-
aggregation rewriting rule. Pre-aggregation is typically outper-
formed by pre-transformation if we only consider the execution of a
single batch or sequential execution of multiple batches. The reason
is that pre-aggregation performs the more computation-intensive
spmm operation on CPU while GPU speedup for spmm is typically
muchmore signi!cant than mm, as shown later in Table 6. However,

when we consider scheduling and pipelining multiple batches later,
various rewritten EPGs can be useful in di"erent cases because
di"erent resources can be idle at di"erent periods. For example,
in Figure 4d, after the mm 𝑁 = 𝑃𝑂 on CPU of batch 1 !nishes,
batch 2 can use pre-aggregation so the spmm 𝑁 = 𝑀𝑃 of batch 2
can continue on CPU without waiting for gradient update.

To decide whether a rewriting rule should be adopted and how
much acceleration is expected, DAHA leverages the batch statistics
and our data and hardware aware cost model to estimate the time
cost. Notably, this intra-batch level optimization can be applied to
full-graph training like GCN since the full-graph could be regarded
as a batch. This concludes the data and hardware aware intra-batch
EPG rewriting module of DAHA.

3.2.3 Inter-batch scheduling optimizations. DAHA combines its
intra-batch optimization with inter-batch scheduling to boost de-
vice utilization and improve end-to-end training e#ciency.

Problem formulation. Given a set of batches, available CPU
workers, GPU workers, and PCIE bandwidth for CPU-GPU data
transfer. Each batch consists of a series of dependent operations
that can be processed in any order if the dependency is not broken.
Each computation operation in a batch can be processed on any
CPU or GPU worker. Each communication operation consumes the
PCIE bandwidth. Given the per-operation estimates from the cost
model, our goal is to determine the schedule of the operations on
the available hardware that yields the minimum makespan.

This formulation takes into consideration the intra-batch EPG
rewriting as well because the intra-batch operations can take place
in an arbitrary order that does not break the dependency. Thus, the
inter-batch scheduling optimizations of DAHA naturally inherit
the bene!ts of its intra-batch strategies. Besides, there is few risk of
GPU waiting due to synchronization because DAHA can automat-
ically allocate the idle GPU resources to suitable operations and
bounded staleness is applied for more pipeline opportunities.

Hardness of the problem. DAHA’s scheduling problem can be
reduced from a variant of the $exible job-shop scheduling problem
(FJSP) which is NP-Hard [2]. The inputs to FJSP are a set of jobs
and a set of machines. Each job consists of a sequence of opera-
tions processed in such an order that one precedes another. Each
operation can be processed on any machine of a given type and
the duration is known. The goal of the problem is to determine the
schedule that gives the minimum makespan. It is well known that
FJSP is not only NP-Hard but also intractable as it is considered one
of the most computationally stubborn problems [2] and existing
approximation solutions might also fail to have a logarithmic per-
formance guarantee [3, 11]. The possibly many intra-batch EPGs
further add to the hardness of the problem.

Proof of hardness.We prove that FJSP is reducible to our prob-
lem. Consider a FJSP with three input machines namely CPU, PCIE,
and GPU. Each job consists of three operations, CPU computation,
PCIE communication and GPU computation. These three opera-
tions should be processed in the above order on the stated machine.
Then if there exists an solution to DAHA’s inter-batch scheduling
problem, then we can just !x the intra-batch EPG as CPU-PCIE-
GPU and give the scheduling plan. This will minimize the FJSP’s
makespan as well. This !nishes the proof.

1369



Hardware-aware Sampling: Takeaways

GIDS [VLDB’24]

o Between storage devices
o Hierarchical node attribute buffer

Transmission Computation

ADGNN [SIGMOD’23]

o Between computational devices
o Balance Local & Global Sampling

DAHA [VLDB’24]

o Among data partitions
o Balance CPU & GPU computation

NeutronOrch [VLDB’24]

o Among GNN operations 
o Layer- & batch-wise pipelining



Subgraph Extraction
Advances in Designing Scalable GNNs



Introduction

20 min
10:10 ‒ 10:30

Outline

Subgraph Extraction
Ningyi Liao

Classical Approaches

Hardware-aware Sampling

Partition

SUREL [H Yin et al | VLDB’23] & GENTI [Z Yu et al | VLDB’24]

Slicing TIGER (K Wang et al | VLDB’24)

Application: Hardware Obfuscation Analysis

Generation

G3 [X Wan et al | SIGMOD’23]



Subgraph Extraction: Challenges

H Yuan et al, "Comprehensive Evaluation of GNN Training Systems: A Data Management Perspective", VLDB’24. 

(a) Traditional partitioning (c) GNN partitioning

Partitioning

M
ac

hi
ne

1
M

ac
hi

ne
2

Machine 1 Machine 2

A Vertex with ground-truth label

2-hop neighbors

B

Not involved in training

(b) Heavy remote neighbor request

M
ac

hi
ne

1
M

ac
hi

ne
2

Remote neighbor 
feature request

A
B

A
B

Figure 3: Traditional partitioning vs. GNN partitioning.

the minimum number of cutting edges. However, this partitioning
is not optimal for GNN training due to the following two issues: (1)
Severe computational load imbalance. The graph partitioner assigns
all labeled vertices (A and B) to machine 2, leaving machine 1 idle,
thus wasting computational resources. (2) High communication vol-
ume. The minimum edge-cut graph partitioning method does not
consider the distribution of L-hop neighbors of vertices. The neigh-
bors of labeled vertices are scattered in di!erent partitions, which
results in heavy remote neighbor requests. For example, as shown
in Figure 3b, for the GNN training, using the minimum edge-cut
partitioning method from Figure 3a would result in approximately
half of the 2-hop neighbors of training vertices (A and B) being
distributed across di!erent partitions. This would lead to signi"cant
communication overhead, especially considering that the vertices of
a GNN have high-dimensional feature representations. In contrast,
the partitioning shown in Figure 3c balances the workload and, at
the same time, maximizes the localization of L-hop neighbors of
training vertices, thereby reducing inter-partition communication.

Di!erent from traditional data partitioning, GNN data partition-
ing has new goals. We summarize these goals as follows:

• Goal 1: Minimize communication. Partitioning label vertices
and their L-hop neighbors into the same partition allows the
L-hop sampled subgraphs to be distributed as locally as possible,
thus avoiding extensive remote data requests.

• Goal 2: Balance computational load. Making labeled vertices
and their L-hop neighbors evenly distributed across partitions
allows a balanced computational load.

• Goal 3: Minimize total computational load. Making the train-
ing L-hop subgraphs overlap with each other in a partition allows
reusing the NN computation results, which helps reduce the total
computational load.

• Goal 4: Balance communication load. Communication load
imbalance is a common challenge faced by both traditional graph
computations andGNNs. However, compared to traditional graph
computations, GNNs require frequent access to the L-hop neigh-
bors of vertices, and the vertices of GNNs have high-dimensional
feature representations. As a result, the problem of communica-
tion load imbalance is even more pronounced in GNNs. Making
the remote neighbors of labeled vertices evenly across di!erent
partitions can balance the communication load.

5.2 Existing Methods
The graph partitioning methods used in the GNN systems can be
categorized into the following three types:

(1) Hash. Hash is a general graph partitioning method that can sat-
isfy various task requirements by de"ning di!erent mapping rules,

Table 3: Summary of evaluated partitioning methods.

Method Strategy Representative
System G1 G2 G3 G4

Hash Randomly assign vertices or
edges. P3 [12] ! " ! "

Metis-V
Extend Metis by adding
constraints on training vertex
masks.

N/A " # # !

Metis-VE
Extend Metis by adding
constraints on training vertex
masks and vertex degrees.

DistDGL
[73] $ $ % %

Metis-VET

Extend Metis by adding
constraints on
training/validation/test vertex
masks and vertex degrees.

SALIENT
++ [18] $ $ % %

Stream-V

Assign vertex 𝐿 to a partition
𝑀 that has the most edges
connected to 𝐿, while
balancing the number of train
vertices and caching L-hop
neighbors.

PaGraph
[25] " # ! "

Stream-B

Assign a block 𝑁 of vertices to
a partition 𝑀 that has the
most edges connected to 𝑁,
while balancing the number
of train/val/test vertices.

ByteGNN
[72] # # ! !

such as hashing by vertices [3, 10, 17, 44, 45, 55, 67, 75] or hash-
ing by edges [28, 29, 39, 48]. P3 [12] employs a hash-based graph
partitioning method that randomly assigns vertices to di!erent
partitions, achieving a balance in computational and communica-
tion loads (goal 2 and goal 4). However, hash partitioning does not
consider the labeled vertices in GNNs and their L-hop neighbors,
so it cannot achieve the other two goals of GNN graph partitioning.

(2) Metis-extend. Metis [20] partitions the graph with the goal of
minimum edge cuts. In addition, it supports a variety of constraint
mechanisms to extend Metis to meet di!erent task requirements.
We refer to this constrained Metis partitioning method as Metis-
extend, which is used in DistDGL [73], and SALIENT++ [18]. The
Metis-extend method e!ectively achieves the goals of GNN graph
partitioning. Firstly, Metis employs a clustering algorithm for parti-
tioning, ensuring that the neighbors of labeled vertices are allocated
together, thus minimizing both computational and communication
loads (goal 1 and goal 3). Secondly, Metis is extended by adding con-
straints with vertex masks to balance the number of labeled vertices
(goal 2). In addition, Metis can be extended by adding constraints
on vertex degrees to balance the number of edges across partitions,
alleviating the load imbalance in computation and communication
(goal 2 and goal 4).

(3) Streaming. Unlike traditional graph partitioning methods,
streaming partitioning does not require storing the entire graph
data but dynamically partitions the input vertices or edges. Stream-
ing partitioning can #exibly support various graph partitioning
tasks by setting di!erent score functions when assigning vertices
or edges. PaGraph [25] and ByteGNN [72] both employ streaming
graph partitioning methods. When assigning vertices, they priori-
tize assigning vertices to the partitions with the highest number
of connected edges, aiming to minimize communication overhead
(goal 1). Additionally, they use a factor to balance the number of
label vertices (goal 2). However, these two streaming graph parti-
tioning methods do not consider the density of partitioned graphs
and the distribution of L-hop neighbors and thus su!er from high
computational and imbalanced communication loads.

Effectiveness
• Topology-based partition 

may be not optimal

Efficiency
• Data transferring overhead 

is significant 

performance. In the batch preparation step, DNN only randomly
divides the data samples into batches because of no dependency
between data samples. GNN generates the training subgraphs by
sampling for each batch. Complex data dependencies between data
samples increase the sampling overhead. In the data transferring
step, the low PCIe bandwidth between CPU and GPU results in high
transfer overheads for both GNN and DNN. Compared to DNN,
there are a large number of duplicate vertices and edges across
di!erent batches [25] due to the complex dependencies between
vertices. Transferring such redundant vertices and edges wastes
bandwidth resources severely [18, 25, 62], bringing opportunities
for data transfer optimizations.

To illustrate the impact of handling data dependencies, Figure 2
shows a step-level time breakdown in both GNN and DNN training.
For GNN training, we use a two-layer GCN [21] with a two-layer
multi-layer perceptron model (MLP). For DNN training, to ensure
fairness, we use a two-layer MLP with the same parameter settings
as that in GCN. Since data partitioning is a preprocessing task per-
formed only once before training, its runtime is ignorable. We can
observe that the NN computation step consumes the majority of
the runtime in DNN training, while the training in GNN only takes
up a small portion. Furthermore, the overhead of the data manage-
ment steps in GNN training (data partitioning, batch preparation,
and data transferring) is notably higher than that in DNN train-
ing. Compared to DNN training, GNN training involves processing
large-scale graph data. The data samples in GNN (i.e., graph ver-
tices) exhibit complex dependencies, making the data management
steps of GNN training more intricate and time-consuming than
those of DNN training. Therefore, e"cient data management is
very important for GNN training.

Many GNN training systems have recently emerged to support
e"cient GNN training [4, 5, 11, 12, 17, 25, 26, 44, 45, 48, 50, 54, 55,
62, 63, 71–73]. These systems di!er greatly in their targeted ap-
plication scenarios and optimization techniques, especially from a
data management perspective. The importance of data management
in GNN training and the recent emergence of various data man-
agement techniques motivate us to study the impact of di!erent
optimizations and parameters in GNN training. In this paper, we
review the training process of GNN from the data management
perspective and provide a comprehensive analysis and evaluation
of optimization techniques proposed in GNN training systems. The
contributions of this paper can be summarized as follows.
• A taxonomy of data management techniques in GNN training.
• A comprehensive evaluation of data management techniques in

GNN training.
• A summarization of lessons learned from our evaluation results.
We believe that our comprehensive analysis and evaluation results
should be helpful for researchers and system developers to further
improve the existing GNN training systems or design new GNN
training systems.
Related Work. Recent surveys [24, 42, 46] provide an overview
of the state-of-the-art GNN training systems and related optimiza-
tion techniques. Unlike these survey papers, we categorize and
summarize various optimizations for GNN training from a data
management perspective, and provide a comprehensive experimen-
tal evaluation of them. Huang et al. investigate the performance gap
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Figure 2: Time portion of di!erent steps in GNN training and
DNN training.

of GPU-based GNN systems and provide a set of optimizations to
enhance performance [15]. A recent work [30] empirically studies
graph partitioning for distributed GNN training. These two works
only evaluate a single step of the entire GNN training process and do
not separate data management from the entire training process for
evaluation. Liu et al. provide a thorough experimental comparison
of di!erent sampling algorithms [27]. Wang et al. experimentally
evaluate GNN training and inference on a single GPU [57]. These
two works focus on single GPU GNN training and do not consider
a distributed environment.

2 GNN TRAINING PROCESS
GNNs are a type of neural network that operates on graphs. The
key idea behind GNNs is to learn vertex and edge representations
that capture the structural information of the graph.
Graph Neural Network (GNN). Similar to traditional neural net-
works, the training process of GNNs includes forward propagation
and backward propagation. In forward propagation, each vertex
collects its neighbors’ features to generate the aggregation result
using an aggregation function:

𝐿 (𝐿 )𝑀 = 𝑀𝑁𝑁𝑂𝑃𝑁𝑀𝑄𝑃 ({𝑅 (𝐿→1)𝑁 |𝑆 ↑ 𝑇 (𝑈)}), (1)

where 𝑅 (𝐿→1)𝑁 denotes the embedding of vertex 𝑆 at (𝑉-1)-th layer,
𝑇 (𝑈) denotes the incoming neighbors of vertex 𝑈 , and 𝐿 (𝐿 )𝑀 denotes
the aggregation result of vertex 𝑈 at 𝑉-th layer. Speci#cally, 𝑅0𝑀 de-
notes the input feature of vertex 𝑈 . The aggregate functions can
be sum, average, max/min, etc. Subsequently, the aggregated fea-
tures are combined with the vertex’s own features using a combine
function:

𝑅𝐿𝑀 = 𝑊 (W(𝐿 ) ·𝑋𝑌𝑍𝑎𝑏𝑇𝑃 (𝑅𝐿→1𝑀 ,𝐿𝐿𝑀)), (2)

where 𝑊 denotes a non-linear function (e.g., ReLU), W(𝐿 ) denotes
the weight matrix that transforms the vertex embedding at (𝑉-1)-th
layer. The combine function can be concatenation, element-wise
multiplication, or summation. Then, a neural network (usually a
multi-layer perceptron model, MLP) is used to update the features
of each vertex. Finally, the output vertex features are compared
to the ground truth labels to compute the loss. In the backward
propagation, the loss is propagated through the neural network in
the reverse direction, generating gradients that are used to update
the model’s parameters.
Distributed Mini-Batch GNN Training. Due to the increasing
size of real-world graph data, many emerging GNN training systems
[12, 18, 25, 26, 31, 44, 62, 67, 72–75] adopt distributed mini-batch
training. This approach splits the training vertices into multiple
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Fig. 2. Scalability of existing GNN systems without neighbor sampling on Reddit. Numbers are reported
based on each system’s throughput on 1-node. Linear represents the ideal speedup ratio.

Full-graph GNN training is actively researched in today’s machine learning research commu-
nity [31, 34, 40]. However, for the reasons described above, current GNN systems fall short of
supporting full-graph training when high accuracy and e!ciency are desired at the same time.

3 GNN HYBRID PARALLELISM
Existing systems are less e!cient in training GNNs at scale due to the complex computation depen-
dencies created by neighbor aggregation, and the naive adoption of existing DNN parallelization
methods results in signi"cant overhead.

We propose GNN hybrid parallelism, a novel parallelization strategy that avoids duplicate work
by sharing intermediate results peer-to-peer between GNN layers.

3.1 GNN Hybrid ParallelismWorkflow

worker 
#1

worker 
#2

worker 
#0

DP Dimension

MP Dimension

PP Dimension

Input Graph

part #0

part #1

part #2

Layer 0 Layer 1 Layer 2

Out-of-Partition 
1-hop Neighbors

GNN 
Computation

P2P Intermediate 
Data Sharing

In-Partition
Nodes

Cross-Partition 
Communication

Time

• • •  Output

• • •  Output

• • •  Output

Fig. 3. A running example of hybrid-parallel training workflow on an 8-node graph with 3 workers. The
workflow incorporates three parallel dimensions (data, model, and pipeline). The detailed explanation on the
example is in §3.1.

G3 uses GNN hybrid parallelism to enable both data parallelism and model parallelism, while
also pipelines the inter- and intra-layer training process. Figure 3 depicts a running example on an
8-node graph with 3 workers.
To begin with, the input graph is divided into smaller partitions for training, known as the

data-parallel dimension. In the given example, an 8-node graph is split into three parts, each
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• 2-stage graph partition
• Stage 1: unsupervised, minimize 
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reducing cut edges

• Stage 2: adaptive updated, 
balance empirical communication
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Notation Description
G = (V , E) Input graph with its node and edge set
P(G,k) = k-partition result of graph G
{V1, ...,Vk } Vi represents the nodes in partition i

E(Vi ) Edges in G that destine to nodes in Vi
V
r emote
i Out-of-partition neighbors of partition i

dv Degree of node v from G

N (v) Neighbors of node v from G

Table 1. Notations and factors a!ecting GNN work-
load over a partition in hybrid parallelism. Fig. 4. Two stages of partitioning algorithm

3.3 Comparison with Recent Works
We note that similar ideas of GNN hybrid parallelism have been explored in some recent works [11,
34]. However, existing solutions fail to fully exploit the opportunities to reach the maximum degree
of parallelism. They did not identify the challenges of high system synchronization overhead raised
by the idea of GNN hybrid parallelism. More speci!cally, existing solutions (1) did not balance
cross-partition communication in graph partitioning algorithms, and (2) did not explore more
e"cient pipelines with minimized waiting time by assigning di#erent computation priorities.
G3 fully explores these challenges that are unique in distributed GNN training, presents com-

prehensive optimization and implementation to address the system challenges, and evaluates the
solutions with both end-to-end and microbenchmark experiments.

Moreover, in the pipeline-parallel dimension, nodes are grouped into smaller groups called bins
and processed in pipelines. This allows G3 to adapt bin sizes to the GPU memory capacity and
enables G3 to handle larger graphs, unlike full-graph training systems like NeutronStar [40] and
BNS-GCN [34] which may encounter GPU memory limitations with large graphs.

4 BALANCEDWORK PARTITIONING
In distributed GNN training, achieving a balanced workload among partitions requires more than
just equal graph nodes and global min edge-cut. In this section, we formulate the cost factors
in distributed GNN training workload and propose a locality-aware iterative graph partitioning
algorithm that e"ciently balances these factors across workers.

4.1 Cost Factors in Distributed GNN Training
When assigning a graph partition to a worker, several graph-related factors a#ect the worker’s
training workload. We summarize several factors which determine the workload of partition Vi as
follows:
(1) Number of nodes |Vi |, which directly contributes to the GNN computation cost.
(2) Number of edges |E(Vi )|, which a#ects the GNN computation cost due to neighborhood aggrega-

tion.
(3) Number of out-of-partition neighboring nodes |V r emote

i |, which determines the amount of data
to be transferred out to other workers after each layer’s computation. This is essentially the
peer-to-peer communication cost in the model parallel dimension of hybrid parallelism.
Chunk-based graph partitioning method, used in NeuGraph [28], ROC [18] and NeutronStar [40],

partitions the graph into chunks that contain nodes with consecutive IDs. While it balances |Vi |,
the actual amount of workload may be highly unbalanced because the method does not consider

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 143. Publication date: June 2023.
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Xu,v [0, 0, 1]

<latexit sha1_base64="V0MCirY6kRcsKzXZQO3sNTDe8p0=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovQRSlJKeqy4MZlBfuANITJdNIOnUzCzKRQQnTjr7hxoYhbv8Kdf+OkzUJbD1w4nHMv997jx4xKZVnfxtr6xubWdmmnvLu3f3BoHh13ZZQITDo4YpHo+0gSRjnpKKoY6ceCoNBnpOdPbnK/NyVC0ojfq1lM3BCNOA0oRkpLnnk6CJEaY8TSfual09o0e3AaNatmuZ5ZserWHHCV2AWpgAJtz/waDCOchIQrzJCUjm3Fyk2RUBQzkpUHiSQxwhM0Io6mHIVEuun8hQxeaGUIg0jo4grO1d8TKQqlnIW+7swPlsteLv7nOYkKrt2U8jhRhOPFoiBhUEUwzwMOqSBYsZkmCAuqb4V4jATCSqdW1iHYyy+vkm6jbl/Wm3fNSqtaxFECZ+AcVIENrkAL3II26AAMHsEzeAVvxpPxYrwbH4vWNaOYOQF/YHz+AFf5lqk=</latexit>

Xv,v [2, 0, 0]

<latexit sha1_base64="g8WxjRXBeQjYmi92T4+q6F9lL14=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJpKjLghuXFewD0hAm00k7dDIJM5NCCdGNv+LGhSJu/Qp3/o2TNgttPXDhcM693HuPHzMqlWV9G6W19Y3NrfJ2ZWd3b//APDzqyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+f3OR+b0qEpBG/V7OYuCEacRpQjJSWPPNkECI1xoil/cxLp3WUPThW3arbrmdWrYY1B1wldkGqoEDbM78GwwgnIeEKMySlY1uxclMkFMWMZJVBIkmM8ASNiKMpRyGRbjp/IYPnWhnCIBK6uIJz9fdEikIpZ6GvO/OD5bKXi/95TqKCazelPE4U4XixKEgYVBHM84BDKghWbKYJwoLqWyEeI4Gw0qlVdAj28surpHvRsC8bzbtmtVUr4iiDU3AGasAGV6AFbkEbdAAGj+AZvII348l4Md6Nj0VryShmjsEfGJ8/NduWkw==</latexit>

Xv,a [0, 0, 1]

<latexit sha1_base64="0n/K7IoWbRatnz5D5GvDmbaEJiM=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovQRSlJKeqy4MZlBfuANITJdNIOnUzCzKRQQnTjr7hxoYhbv8Kdf+OkzUJbD1w4nHMv997jx4xKZVnfxtr6xubWdmmnvLu3f3BoHh13ZZQITDo4YpHo+0gSRjnpKKoY6ceCoNBnpOdPbnK/NyVC0ojfq1lM3BCNOA0oRkpLnnk6CJEaY8TSfual05qfPThWrVGzXM+sWHVrDrhK7IJUQIG2Z34NhhFOQsIVZkhKx7Zi5aZIKIoZycqDRJIY4QkaEUdTjkIi3XT+QgYvtDKEQSR0cQXn6u+JFIVSzkJfd+YHy2UvF//znEQF125KeZwowvFiUZAwqCKY5wGHVBCs2EwThAXVt0I8RgJhpVMr6xDs5ZdXSbdRty/rzbtmpVUt4iiBM3AOqsAGV6AFbkEbdAAGj+AZvII348l4Md6Nj0XrmlHMnIA/MD5/ADjxlpU=</latexit>

Xv,b [0, 2, 0]

<latexit sha1_base64="pS3n/gmTOefwvvjYexDu3zjWoaE=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJpKjLghuXFewD0hAm00k7dDIJM5NCCdGNv+LGhSJu/Qp3/o2TNgttPXDhcM693HuPHzMqlWV9G6W19Y3NrfJ2ZWd3b//APDzqyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+f3OR+b0qEpBG/V7OYuCEacRpQjJSWPPNkECI1xoil/cxLp/Uke3CsulW3Xc+sWg1rDrhK7IJUQYG2Z34NhhFOQsIVZkhKx7Zi5aZIKIoZySqDRJIY4QkaEUdTjkIi3XT+QgbPtTKEQSR0cQXn6u+JFIVSzkJfd+YHy2UvF//znEQF125KeZwowvFiUZAwqCKY5wGHVBCs2EwThAXVt0I8RgJhpVOr6BDs5ZdXSfeiYV82mnfNaqtWxFEGp+AM1IANrkAL3II26AAMHsEzeAVvxpPxYrwbH4vWklHMHIM/MD5/AFTflqc=</latexit>

Xv,u [0, 0, 1]

<latexit sha1_base64="SlxtEcJt04SEIcQ/gjx+Pl6Nf4U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3BPUY8OIxonlAsoTZyWwyZHZ2mekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDv3209cGxGrR5wk3I/oUIlQMIpWeihXL/vFkltxFyDrxMtICTI0+sWv3iBmacQVMkmN6Xpugv6UahRM8lmhlxqeUDamQ961VNGIG3+6OHVGLqwyIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMMbfypUkiJXbLkoTCXBmMz/JgOhOUM5sYQyLeythI2opgxtOgUbgrf68jppVSveVaV2XyvVy1kceTiDcyiDB9dQhztoQBMYDOEZXuHNkc6L8+58LFtzTjZzCn/gfP4APFyNCg==</latexit>

(2)

<latexit sha1_base64="9ZxwAdYknmQRoueL0FD3qNY/lxQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJe9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM5Uo0I</latexit>

(0)
<latexit sha1_base64="j73pxlx+Krgd7RmEahCZ5CQtx8I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJd9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM6140J</latexit>

(1)

<latexit sha1_base64="SG6huJMQhK2NdyhASqR2T7WygGE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXg3oMePEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh/Llea9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDGn3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXlS8q0r1vlqqlbM48nACp1AGD66hBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBPeGNCw==</latexit>

(3)

Landing Counts

Dictionary

<latexit sha1_base64="j73pxlx+Krgd7RmEahCZ5CQtx8I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJd9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM6140J</latexit>

(1)

<latexit sha1_base64="KNc5am8wBwqtotbcE/qd0Q/8srU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLgpssK9gFtKJPppB06yYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVqxttMSaV7ATVcipi3UaDkvURzGgWSd4Ppfe53n7g2QsWPOEu4H9FxLELBKFqpP4goThiVWXM+rNbcursAWSdeQWpQoDWsfg1GiqURj5FJakzfcxP0M6pRMMnnlUFqeELZlI5539KYRtz42SLynFxYZURCpe2LkSzU3xsZjYyZRYGdzCOaVS8X//P6KYZ3fibiJEUes+VHYSoJKpLfT0ZCc4ZyZgllWtishE2opgxtSxVbgrd68jrpXNW9m/r1w3Wt4RZ1lOEMzuESPLiFBjShBW1goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AeHWRVQ==</latexit>

H

u b a
u b v
v b a
v b u v

Joined Walks 
for Query 

<latexit sha1_base64="3lzQlRDgF0KEesmfyR0J5pV4G/8=">AAAB+nicbVDLSgMxFM3UV62vqS7dBItQYSiZUtRlwY3LCvYB06Fk0kwbmskMSUYpYz/FjQtF3Pol7vwb03YW2nrgcg/n3EtuTpBwpjRC31ZhY3Nre6e4W9rbPzg8ssvHHRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0Gk5u5332gUrFY3OtpQv0IjwQLGcHaSAO7XPWQgxzXd7y66ci/GNgVVEMLwHXi5qQCcrQG9ld/GJM0okITjpXyXJRoP8NSM8LprNRPFU0wmeAR9QwVOKLKzxanz+C5UYYwjKUpoeFC/b2R4UipaRSYyQjrsVr15uJ/npfq8NrPmEhSTQVZPhSmHOoYznOAQyYp0XxqCCaSmVshGWOJiTZplUwI7uqX10mnXnMva427RqXp5HEUwSk4A1XggivQBLegBdqAgEfwDF7Bm/VkvVjv1sdytGDlOyfgD6zPH8EukQg=</latexit>

([0, 0, 1], [2, 0, 0])

<latexit sha1_base64="FTTs/rXGZ6HYg45a+9BKQ2NpE04=">AAAB9HicbVBNSwMxFHxbv2r9qnr0EiyCBym7UtRjwYvHCrYW2qW8TdM2NJtdk2yhLP0dXjwo4tUf481/Y7bdg7YOBIaZ93iTCWLBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpKFGVNGolItQPUTHDJmoYbwdqxYhgGgj0G49vMf5wwpXkkH8w0Zn6IQ8kHnKKxkt8N0YwoirQ16yW9csWtunOQVeLlpAI5Gr3yV7cf0SRk0lCBWnc8NzZ+ispwKtis1E00i5GOccg6lkoMmfbTeegZObNKnwwiZZ80ZK7+3kgx1HoaBnYyC6mXvUz8z+skZnDjp1zGiWGSLg4NEkFMRLIGSJ8rRo2YWoJUcZuV0BEqpMb2VLIleMtfXiWty6p3Va3d1yr1i7yOIpzAKZyDB9dQhztoQBMoPMEzvMKbM3FenHfnYzFacPKdY/gD5/MHIU6SRw==</latexit>

Vu

b

a

c

v

d

u

<latexit sha1_base64="9pODOE3a96Fv6lo4eWlroyGmv9A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqDcLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vmjf9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9YqdTePowgncArn4MEV1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/jVmMug==</latexit>

?
Query

<latexit sha1_base64="omBmvcGz8LfXqtzZDDyt0b1nRXQ=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSJ4KGVXinoRCl48tmA/YLeUbJptQ7PJkmQLZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88KEM21c99vZ2Nza3tkt7BX3Dw6Pjksnp20tU0Voi0guVTfEmnImaMsww2k3URTHIaedcPww9zsTqjST4slME9qL8VCwiBFsrOQ30T0KsrQyCWb9UtmtugugdeLlpAw5Gv3SVzCQJI2pMIRjrX3PTUwvw8owwumsGKSaJpiM8ZD6lgocU93LFifP0KVVBiiSypYwaKH+nshwrPU0Dm1njM1Ir3pz8T/PT01018uYSFJDBVkuilKOjETz/9GAKUoMn1qCiWL2VkRGWGFibEpFG4K3+vI6aV9XvZtqrVkr1yt5HAU4hwu4Ag9uoQ6P0IAWEJDwDK/w5hjnxXl3PpatG04+cwZ/4Hz+ABtpkHA=</latexit>

Q = {u, v}

Prepocessing

<latexit sha1_base64="X2l3BXcxGuAm/+pnYWEIGCnqR0A=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mEmCfkSHkoecUWOlRqNfKrsVdw6ySryclCFHvV/66g1ilkYoDRNU667nJsbPqDKcCZwWe6nGhLIxHWLXUkkj1H42P3RKzq0yIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynaELzll1dJ66riXVeqjWq5dpnHUYBTOIML8OAGanAPdWgCA4RneIU359F5cd6dj0XrmpPPnMAfOJ8/p22MyA==</latexit>

Q

<latexit sha1_base64="pIGnLOGwDItXLgQyrHwhi5ZNL1I=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclJJIUZcFNy5bsA9oQ5hMJ+3QySTMTNQS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45fsyoVLb9baytb2xubZd2yrt7+weHZuWoK6NEYNLBEYtE30eSMMpJR1HFSD8WBIU+Iz1/epP7vXsiJI34nZrFxA3RmNOAYqS05JmVYYjUBCOW9jMvbdceM8+s2nV7DmuVOAWpQoGWZ34NRxFOQsIVZkjKgWPHyk2RUBQzkpWHiSQxwlM0JgNNOQqJdNN59Mw608rICiKhH1fWXP29kaJQylno68k8qFz2cvE/b5Co4NpNKY8TRTheHAoSZqnIynuwRlQQrNhME4QF1VktPEECYaXbKusSnOUvr5LuRd25rDfajWqzVtRRghM4hXNw4AqacAst6ACGB3iGV3gznowX4934WIyuGcXOMfyB8fkDgZuUGg==</latexit>

XQ,x

<latexit sha1_base64="88NxTMld5tsDpwBI4ig6q3uroDE=">AAACKXicbZBLSwMxEMez9VXra9Wjl2BR6sGyK0XFU0GFeqtiH9AtJZumbWj2QTIrlqVfx4tfxYuCol79Imbb4qM6EPjPb2bIzN8NBVdgWW9GamZ2bn4hvZhZWl5ZXTPXN6oqiCRlFRqIQNZdopjgPqsAB8HqoWTEcwWruf3TpF67YVLxwL+GQciaHun6vMMpAY1aZtHxCPQoEXFp2IpO8Fda1Sl2IPgm9YTkHGC3EF+Vz/cvzjTYa5lZK2+NAv8V9kRk0STKLfPJaQc08pgPVBClGrYVQjMmEjgVbJhxIsVCQvukyxpa+sRjqhmPLh3iHU3auBNI/XzAI/pzIiaeUgPP1Z3J2mq6lsD/ao0IOsfNmPthBMyn4486kcDagMQ23OaSURADLQiVXO+KaY9IQkGbm9Em2NMn/xXVg7x9mC9cFrLF3YkdabSFtlEO2egIFVEJlVEFUXSHHtAzejHujUfj1Xgft6aMycwm+hXGxyft3abs</latexit>

Hu : Vu ! Xu(RPE-IDu)

<latexit sha1_base64="nmcM+PUfAW4kzBgjLUiiz0LeziY=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZcOOyQl8wHUomzbShmWRIMkIZ+hluXCji1q9x59+YaWehrQcCh3PuJeeeMOFMG9f9dkobm1vbO+Xdyt7+weFR9fikq2WqCO0QyaXqh1hTzgTtGGY47SeK4jjktBdO73O/90SVZlK0zSyhQYzHgkWMYGMlfxBjMyGYZ+35sFpz6+4CaJ14BalBgdaw+jUYSZLGVBjCsda+5yYmyLAyjHA6rwxSTRNMpnhMfUsFjqkOskXkObqwyghFUtknDFqovzcyHGs9i0M7mUfUq14u/uf5qYnugoyJJDVUkOVHUcqRkSi/H42YosTwmSWYKGazIjLBChNjW6rYErzVk9dJ97ru3dQbj41a86qoowxncA6X4MEtNOEBWtABAhKe4RXeHOO8OO/Ox3K05BQ7p/AHzucPiX2RXQ==</latexit>

T

<latexit sha1_base64="mIeeLlPxa+eRg62Qr9ew94KaWQE=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLixmUF+4A2lMl00g6dTMLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvPHFtRKwecZpwP6IjJULBKFqp148ojhmV2e1sUK25dXcOskq8gtSgQHNQ/eoPY5ZGXCGT1Jie5yboZ1SjYJLPKv3U8ISyCR3xnqWKRtz42TzyjJxZZUjCWNunkMzV3xsZjYyZRoGdzCOaZS8X//N6KYY3fiZUkiJXbPFRmEqCMcnvJ0OhOUM5tYQyLWxWwsZUU4a2pYotwVs+eZW0L+reVf3y4bLWcIs6ynACp3AOHlxDA+6hCS1gEMMzvMKbg86L8+58LEZLTrFzDH/gfP4AbdKRTg==</latexit>

A

<latexit sha1_base64="jXyNucuYOdThS3wDwfYqyuoW30E=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFcSEmkqMuCG5cV7APaUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeIJHCoOt+O2vrG5tb26Wd8u7e/sFh5ei4beJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3OV+54lrI2L1iNOE+xEdKREKRtFKvX5EccyozLqzQaXq1tw5yCrxClKFAs1B5as/jFkacYVMUmN6npugn1GNgkk+K/dTwxPKJnTEe5YqGnHjZ/PIM3JulSEJY22fQjJXf29kNDJmGgV2Mo9olr1c/M/rpRje+plQSYpcscVHYSoJxiS/nwyF5gzl1BLKtLBZCRtTTRnalsq2BG/55FXSvqp517X6Q73auCzqKMEpnMEFeHADDbiHJrSAQQzP8ApvDjovzrvzsRhdc4qdE/gD5/MHj5GRYQ==</latexit>

X

Figure 3: An Illustration of Joining RPE into Query-level
RPEs with the Support of Walk-based Subgraph Storage.
resolves the computational problem caused by the long-tailed dis-
tribution of node degrees. More importantly, the collected walks
grouped by their starting nodes can be shared and reused among
di!erent queries. Our design decouples SGRL from redundant sub-
graph extraction and enables the reusability of preprocessed data.
We summarize the preprocessing routines with the support of hash-
indexed storage in Algorithm 1 and introduce the speci"cs next.

Walk Sampling.During preprocessing, SUREL samples!-many
𝑀-step walks for every node in a given graph. As Fig. 3 (upper left)
shows, the sampled walks are grouped in a setW𝐿 , where# denotes
the starting node of these walks. Walk sampling can be easily di-
vided into parallelizable pieces. The parallelization is implemented
based on NumPy and OpenMP framework in C.Moreover, to further
accelerate walk sampling, we use compressed sparse row (CSR) to
represent the graph. The CSR format consists of two arrays, idxptr
of length |V| + 1 used to record the degrees of nodes, and indices
of size |E |, each row of which corresponds to the neighbor list
per node. CSR allows intensive fast access to the neighbors of a
node while keeping the memory cost low, which is vital for walk
sampling in large-scale graphs.

Relative Positional Encoding (RPE). Structural information
gets lost after breaking subgraphs into walks. SUREL compensates
such loss via RPE to locate the relative position of a node in each
sampled subgraph, which characterizes the structural contribution
of the node to its corresponding subgraph.

For each set of walksW𝐿 , we "rst establish a setV𝐿 that contains
distinct nodes appearing in W𝐿 . De"ne node-level RPE X𝐿 : V𝐿 →
R𝑀+1 as follows: for each node 𝑂 ∈ V𝐿 , a vector X𝐿,𝑁 ∈ R𝑀+1 is
assigned, where X𝐿,𝑁 [%] is the landing counts of node 𝑂 at position
% in all walks of W𝐿 . In SUREL, RPE can be computed on the #y as
walks get sampled, thus resulting in nearly zero extra computational
cost. The set of walks W𝐿 paired with the RPE X𝐿 essentially
characterize a sub-sampled subgraph around the node #. Next, we
present a dedicated data structure to host W𝐿 and X𝐿 altogether.

Algorithm 1: Data Preprocessing in SUREL
Input: Graph G; number of walks! ; step of walks𝑀
Output: Associative array A, RPE array T

1 Initialize the array A and T , the dictionary H
2 for each node # ∈ G do
3 Run! times𝑀-step random walks on G as a set of walk

W𝐿 ∈ Z$×𝑀 ;
4 Add the key V𝐿 = set(W𝐿 ) to H𝐿 ;
5 Calculate RPE for ∀𝑂 ∈ V𝐿 , save the value X𝐿,𝑁 to T ,

and write its index in T as RPE-ID𝐿,𝑁 back to H𝐿 (𝑂);
6 Insert {# : (W𝐿 ,H𝐿 )} to A
7 end
8 Prune T and update the value of H by re-indexing.

3.3 Walk-based Subgraph Storage
It is easy to manage the collected set of walks due to its regularity.
An𝑀∗!-sized chunk is allocated to each set of walks, which assists
to speed up data fetching. How to organize node-level RPE presents
a real challenge because the cardinality of the set |V𝐿 | varies from
node to node. One naïve way to avoid such irregularity is to directly
scatter these RPEs back to nodes in previously collected walks. But,
this gives an𝑀 ∗! ∗ (𝑀 + 1) tensor, resulting in an unrealizable
memory need. Moreover, it loses track of node IDs in walks that
are needed for joining subgraphs later.

We use an associative array A to organize all walk-based sub-
graphs as shown in the upper part of Fig. 3. For each node # ∈ V ,
its corresponding entry in A is a node-level subgraph formed as
a tuple (W𝐿 ,H𝐿 ). Here,W𝐿 is a set of walks starting from #, and
H𝐿 is a dictionary that maps the unique node set V𝐿 ofW𝐿 to its
corresponding node-level RPE X𝐿 . The use of dictionary resolves
irregularities in V𝐿 mentioned above, while maintaining the con-
nection between node IDs and their RPEs. In addition, array T
is introduced to store RPE values centrally, rather than scattered
across dictionaries. As Fig. 3 (upper right) shows, the value ofH𝐿 (𝑂)
is now replaced with the index of the RPE value X𝐿,𝑁 stored in T
accordingly, noted as RPE-ID𝐿,𝑁 . This design overall guarantees the
access of RPE in 𝑄 (1) time.

The aboveA andH𝐿 are built on top of uthash’s macros 1, with
extended support for arbitrary insertions and deletions of key–value
pairs. It o!ers data access and search in𝑄 (1) time on average, which
is about as good as the direct address table but greatly reduces
the space wastage. In particular, it has no dependency or need
for communication between multiple hash queries, thus can be
pleasingly executed in parallel. Both A and H𝐿 are stored in RAM
on the CPU side. As we observed in Fig. 3, there are many repeated
RPE values. Once all nodes are sampled, the array T can be pruned
to remove duplicates. RPE-IDs will be updated synchronously when
T is reindexed. For example, both node ' and 𝑆 have the RPE value
of [0, 0, 1], whose index in T is (1) after pruning. Thus, bothH𝐿 (')
andH𝐿 (𝑆) are assigned to the new RPE-ID as (1). The shape of T
is regular and its size is usually small after pruning, which can be
fully loaded in GPU. In practice, we found that pining RPEs in GPU
memory is critical, as it can signi"cantly reduce the communication
cost of moving data back and forth between RAM and SDRAM.
1https://troydhanson.github.io/uthash/
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<latexit sha1_base64="m8FSTpaxnp/UuQLPE1QxOHvJCy0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahQihJKeqy4MZlBfuANJTJdNIOnTyYmSgl9lPcuFDErV/izr9x2mahrQcu93DOvcyd4yecSWXb30ZhY3Nre6e4W9rbPzg8MsvHHRmngtA2iXksej6WlLOIthVTnPYSQXHoc9r1Jzdzv/tAhWRxdK+mCfVCPIpYwAhWWhqY5aprW3XL9qy8XwzMil2zF0DrxMlJBXK0BuZXfxiTNKSRIhxL6Tp2orwMC8UIp7NSP5U0wWSCR9TVNMIhlV62OH2GzrUyREEsdEUKLdTfGxkOpZyGvp4MsRrLVW8u/ue5qQquvYxFSapoRJYPBSlHKkbzHNCQCUoUn2qCiWD6VkTGWGCidFolHYKz+uV10qnXnMta465RaVp5HEU4hTOoggNX0IRbaEEbCDzCM7zCm/FkvBjvxsdytGDkOyfwB8bnD8K8kQk=</latexit>

([0, 2, 0], [0, 2, 0])

<latexit sha1_base64="BWh8S89uNk+Ym109DzSZb0KjMxY=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBItQIZSkFHVZcOOygn1AGspkOmmHTiZhZqKU2E9x40IRt36JO//GaZuFth64l8M59zJ3TpAwKpXjfBuFjc2t7Z3ibmlv/+DwyCwfd2ScCkzaOGax6AVIEkY5aSuqGOklgqAoYKQbTG7mfveBCEljfq+mCfEjNOI0pBgpLQ3MctWr247t+Lanu+36FwOz4tScBax14uakAjlaA/OrP4xxGhGuMENSeq6TKD9DQlHMyKzUTyVJEJ6gEfE05Sgi0s8Wp8+sc60MrTAWuriyFurvjQxFUk6jQE9GSI3lqjcX//O8VIXXfkZ5kirC8fKhMGWWiq15DtaQCoIVm2qCsKD6VguPkUBY6bRKOgR39cvrpFOvuZe1xl2j0rTzOIpwCmdQBReuoAm30II2YHiEZ3iFN+PJeDHejY/laMHId07gD4zPH8E2kQg=</latexit>

([2, 0, 0], [0, 0, 1])

<latexit sha1_base64="C4pzLUni18TQ7Z7WIdYDj/l2i7U=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSxChVASKeqx4MVjBdsKbSib7aZdutmE3Y1SYn+KFw+KePWXePPfuG1z0NYHwzzem2FnX5BwprTrfluFtfWNza3idmlnd2//wC4ftlWcSkJbJOaxvA+wopwJ2tJMc3qfSIqjgNNOML6e+Z0HKhWLxZ2eJNSP8FCwkBGsjdS3y9Wu67iO5zt5P+vbFbfmzoFWiZeTCuRo9u2v3iAmaUSFJhwr1fXcRPsZlpoRTqelXqpogskYD2nXUIEjqvxsfvoUnRplgMJYmhIazdXfGxmOlJpEgZmMsB6pZW8m/ud1Ux1e+RkTSaqpIIuHwpQjHaNZDmjAJCWaTwzBRDJzKyIjLDHRJq2SCcFb/vIqaZ/XvIta/bZeaTh5HEU4hhOoggeX0IAbaEILCDzCM7zCm/VkvVjv1sditGDlO0fwB9bnD7+gkQc=</latexit>

([0, 0, 1], [0, 0, 1])

<latexit sha1_base64="2HmpY6VASeN/OdNOck3k7ynmLmQ=">AAACJnicbVDLSsNAFJ3UV62vqks3g0XoopREiroRCm5cVrAPaEKYTKft0MkkzKO0hHyNG3/FjYuKiDs/xUnbhW09MHA451zm3hPEjEpl299Wbmt7Z3cvv184ODw6PimenrVkpAUmTRyxSHQCJAmjnDQVVYx0YkFQGDDSDkYPmd8eEyFpxJ/VNCZeiAac9ilGykh+8d4NkRpixJJO6ie6Mkmhq2OmJVwxxsaowAl0KYeuiQUVVBm7qV8s2VV7DrhJnCUpgSUafnHm9iKsQ8IVZkjKrmPHykuQUBQzkhZcLUmM8AgNSNdQjkIivWR+ZgqvjNKD/UiYxxWcq38nEhRKOQ0Dk8x2l+teJv7ndbXq33kJ5bFWhOPFR33NoIpg1hnsUUGwYlNDEBbU7ArxEAmElWm2YEpw1k/eJK3rqnNTrT3VSvXyso48uACXoAwccAvq4BE0QBNg8ALewAx8WK/Wu/VpfS2iOWs5cw5WYP38AsoApdc=</latexit>

Xu,x ] Xv,x, x 2 {u, b, a, v}

<latexit sha1_base64="SWV3PTtN6hfus9UFyp8Ge/zLRzI=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ae0Q8mkaRuayYzJnUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIJbCoOt+O4WNza3tneJuaW//4PCofHzSMlGiGW+ySEa6E1DDpVC8iQIl78Sa0zCQvB1M7jK/PeXaiEg94izmfkhHSgwFo2glvxdSHDMq0/a8P+2XK27VXYCsEy8nFcjR6Je/eoOIJSFXyCQ1puu5Mfop1SiY5PNSLzE8pmxCR7xrqaIhN366CD0nF1YZkGGk7VNIFurvjZSGxszCwE5mIc2ql4n/ed0Eh7d+KlScIFdseWiYSIIRyRogA6E5QzmzhDItbFbCxlRThranki3BW/3yOmldVb3rau2hVqm7eR1FOINzuAQPbqAO99CAJjB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w8ljZJN</latexit>

Wv

u b a
u b v

<latexit sha1_base64="MhUci9CksFIPjBfwA5mkBXeY5B0=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ae0Q7mTpm1oJjMmmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIBZcG9f9dgobm1vbO8Xd0t7+weFR+fikpaNEUdakkYhUJ0DNBJesabgRrBMrhmEgWDuY3GV+e8qU5pF8NLOY+SGOJB9yisZKfi9EM6Yo0va8n/TLFbfqLkDWiZeTCuRo9MtfvUFEk5BJQwVq3fXc2PgpKsOpYPNSL9EsRjrBEetaKjFk2k8XoefkwioDMoyUfdKQhfp7I8VQ61kY2MkspF71MvE/r5uY4a2fchknhkm6PDRMBDERyRogA64YNWJmCVLFbVZCx6iQGttTyZbgrX55nbSuqt51tfZQq9TdvI4inME5XIIHN1CHe2hAEyg8wTO8wpszdV6cd+djOVpw8p1T+APn8wckCZJM</latexit>

Wu

Walk-based Subgraph Storage 

v b a
v b u

 Set of Walks
 (M=2 by m=2 steps) Index

Reduced RPE Array     

2 00
0 02

0 00
0 10

<latexit sha1_base64="SlxtEcJt04SEIcQ/gjx+Pl6Nf4U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3BPUY8OIxonlAsoTZyWwyZHZ2mekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDv3209cGxGrR5wk3I/oUIlQMIpWeihXL/vFkltxFyDrxMtICTI0+sWv3iBmacQVMkmN6Xpugv6UahRM8lmhlxqeUDamQ961VNGIG3+6OHVGLqwyIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMMbfypUkiJXbLkoTCXBmMz/JgOhOUM5sYQyLeythI2opgxtOgUbgrf68jppVSveVaV2XyvVy1kceTiDcyiDB9dQhztoQBMYDOEZXuHNkc6L8+58LFtzTjZzCn/gfP4APFyNCg==</latexit>

(2)
<latexit sha1_base64="j73pxlx+Krgd7RmEahCZ5CQtx8I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJd9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM6140J</latexit>

(1)

Random Walks

<latexit sha1_base64="SG6huJMQhK2NdyhASqR2T7WygGE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXg3oMePEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh/Llea9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDGn3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXlS8q0r1vlqqlbM48nACp1AGD66hBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBPeGNCw==</latexit>

(3)

Relative Positional 
Encoding

RPE-ID

Pruning & Reindexing

Value

bu a v

<latexit sha1_base64="cq+Qu2pOLKQSIh3t7Yz8D8SZsDs=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJSlGXBTcuK9gHpCFMppN26OTBPIQSoht/xY0LRdz6Fe78GydtFtp64MLhnHu59x4/YVRIy/o2SmvrG5tb5e3Kzu7e/oF5eNQTseKYdHHMYj7wkSCMRqQrqWRkkHCCQp+Rvj+9zv3+PeGCxtGdnCXEDdE4ogHFSGrJM0+GIZITjFg6yLxU1VX24DTrVt1yPbNqNaw54CqxC1IFBTqe+TUcxViFJJKYISEc20qkmyIuKWYkqwyVIAnCUzQmjqYRColw0/kLGTzXyggGMdcVSThXf0+kKBRiFvq6Mz9YLHu5+J/nKBlcuSmNEiVJhBeLAsWgjGGeBxxRTrBkM00Q5lTfCvEEcYSlTq2iQ7CXX14lvWbDvmi0blvVdq2IowxOwRmoARtcgja4AR3QBRg8gmfwCt6MJ+PFeDc+Fq0lo5g5Bn9gfP4AVN2Wpw==</latexit>

Xu,u [2, 0, 0]
<latexit sha1_base64="Erzn8pT819vmCts1CMYCXbeBX0c=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJSlGXBTcuK9gHpCFMppN26GQSZiZCCdGNv+LGhSJu/Qp3/o2TNgttPXDhcM693HuPHzMqlWV9G6W19Y3NrfJ2ZWd3b//APDzqySgRmHRxxCIx8JEkjHLSVVQxMogFQaHPSN+fXud+/54ISSN+p2YxcUM05jSgGCkteebJMERqghFLB5mXJnU/e3CserNuuZ5ZtRrWHHCV2AWpggIdz/wajiKchIQrzJCUjm3Fyk2RUBQzklWGiSQxwlM0Jo6mHIVEuun8hQyea2UEg0jo4grO1d8TKQqlnIW+7swPlsteLv7nOYkKrtyU8jhRhOPFoiBhUEUwzwOOqCBYsZkmCAuqb4V4ggTCSqdW0SHYyy+vkl6zYV80WretartWxFEGp+AM1IANLkEb3IAO6AIMHsEzeAVvxpPxYrwbH4vWklHMHIM/MD5/ADdilpQ=</latexit>

Xu,b [0, 2, 0]
<latexit sha1_base64="pBSkt1ubQlf2FaypXUjWz0xDz6I=">AAACAnicbVDLSsNAFL3xWesr6krcDBahi1ISKeqy4MZlBfuANITJdNIOnTyYmQglVDf+ihsXirj1K9z5N07aLLT1wIXDOfdy7z1+wplUlvVtrKyurW9slrbK2zu7e/vmwWFHxqkgtE1iHouejyXlLKJtxRSnvURQHPqcdv3xde5376mQLI7u1CShboiHEQsYwUpLnnncD7EaEcyz3tTL0hqePjhWzarZrmdWrLo1A1omdkEqUKDlmV/9QUzSkEaKcCylY1uJcjMsFCOcTsv9VNIEkzEeUkfTCIdUutnshSk608oABbHQFSk0U39PZDiUchL6ujM/WC56ufif56QquHIzFiWpohGZLwpSjlSM8jzQgAlKFJ9ogolg+lZERlhgonRqZR2CvfjyMumc1+2LeuO2UWlWizhKcAKnUAUbLqEJN9CCNhB4hGd4hTfjyXgx3o2PeeuKUcwcwR8Ynz80TJaS</latexit>

Xu,a [0, 0, 1]
<latexit sha1_base64="V5OGn6N5QF2dL2KH7mLvh/jssQw=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJpKjLghuXFewD0hAm00k7dDIJM5NCCdGNv+LGhSJu/Qp3/o2TNgttPXDhcM693HuPHzMqlWV9G6W19Y3NrfJ2ZWd3b//APDzqyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+f3OR+b0qEpBG/V7OYuCEacRpQjJSWPPNkECI1xoil/cxLk/o0e3CsulW3Xc+sWg1rDrhK7IJUQYG2Z34NhhFOQsIVZkhKx7Zi5aZIKIoZySqDRJIY4QkaEUdTjkIi3XT+QgbPtTKEQSR0cQXn6u+JFIVSzkJfd+YHy2UvF//znEQF125KeZwowvFiUZAwqCKY5wGHVBCs2EwThAXVt0I8RgJhpVOr6BDs5ZdXSfeiYV82mnfNaqtWxFEGp+AM1IANrkAL3II26AAMHsEzeAVvxpPxYrwbH4vWklHMHIM/MD5/AFTdlqc=</latexit>

Xu,v [0, 0, 1]

<latexit sha1_base64="V0MCirY6kRcsKzXZQO3sNTDe8p0=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovQRSlJKeqy4MZlBfuANITJdNIOnUzCzKRQQnTjr7hxoYhbv8Kdf+OkzUJbD1w4nHMv997jx4xKZVnfxtr6xubWdmmnvLu3f3BoHh13ZZQITDo4YpHo+0gSRjnpKKoY6ceCoNBnpOdPbnK/NyVC0ojfq1lM3BCNOA0oRkpLnnk6CJEaY8TSfual09o0e3AaNatmuZ5ZserWHHCV2AWpgAJtz/waDCOchIQrzJCUjm3Fyk2RUBQzkpUHiSQxwhM0Io6mHIVEuun8hQxeaGUIg0jo4grO1d8TKQqlnIW+7swPlsteLv7nOYkKrt2U8jhRhOPFoiBhUEUwzwMOqSBYsZkmCAuqb4V4jATCSqdW1iHYyy+vkm6jbl/Wm3fNSqtaxFECZ+AcVIENrkAL3II26AAMHsEzeAVvxpPxYrwbH4vWNaOYOQF/YHz+AFf5lqk=</latexit>

Xv,v [2, 0, 0]

<latexit sha1_base64="g8WxjRXBeQjYmi92T4+q6F9lL14=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJpKjLghuXFewD0hAm00k7dDIJM5NCCdGNv+LGhSJu/Qp3/o2TNgttPXDhcM693HuPHzMqlWV9G6W19Y3NrfJ2ZWd3b//APDzqyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+f3OR+b0qEpBG/V7OYuCEacRpQjJSWPPNkECI1xoil/cxLp3WUPThW3arbrmdWrYY1B1wldkGqoEDbM78GwwgnIeEKMySlY1uxclMkFMWMZJVBIkmM8ASNiKMpRyGRbjp/IYPnWhnCIBK6uIJz9fdEikIpZ6GvO/OD5bKXi/95TqKCazelPE4U4XixKEgYVBHM84BDKghWbKYJwoLqWyEeI4Gw0qlVdAj28surpHvRsC8bzbtmtVUr4iiDU3AGasAGV6AFbkEbdAAGj+AZvII348l4Md6Nj0VryShmjsEfGJ8/NduWkw==</latexit>

Xv,a [0, 0, 1]

<latexit sha1_base64="0n/K7IoWbRatnz5D5GvDmbaEJiM=">AAACAnicbVDLSsNAFJ34rPUVdSVuBovQRSlJKeqy4MZlBfuANITJdNIOnUzCzKRQQnTjr7hxoYhbv8Kdf+OkzUJbD1w4nHMv997jx4xKZVnfxtr6xubWdmmnvLu3f3BoHh13ZZQITDo4YpHo+0gSRjnpKKoY6ceCoNBnpOdPbnK/NyVC0ojfq1lM3BCNOA0oRkpLnnk6CJEaY8TSfual05qfPThWrVGzXM+sWHVrDrhK7IJUQIG2Z34NhhFOQsIVZkhKx7Zi5aZIKIoZycqDRJIY4QkaEUdTjkIi3XT+QgYvtDKEQSR0cQXn6u+JFIVSzkJfd+YHy2UvF//znEQF125KeZwowvFiUZAwqCKY5wGHVBCs2EwThAXVt0I8RgJhpVMr6xDs5ZdXSbdRty/rzbtmpVUt4iiBM3AOqsAGV6AFbkEbdAAGj+AZvII348l4Md6Nj0XrmlHMnIA/MD5/ADjxlpU=</latexit>

Xv,b [0, 2, 0]

<latexit sha1_base64="pS3n/gmTOefwvvjYexDu3zjWoaE=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iELkpJpKjLghuXFewD0hAm00k7dDIJM5NCCdGNv+LGhSJu/Qp3/o2TNgttPXDhcM693HuPHzMqlWV9G6W19Y3NrfJ2ZWd3b//APDzqyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+f3OR+b0qEpBG/V7OYuCEacRpQjJSWPPNkECI1xoil/cxLp/Uke3CsulW3Xc+sWg1rDrhK7IJUQYG2Z34NhhFOQsIVZkhKx7Zi5aZIKIoZySqDRJIY4QkaEUdTjkIi3XT+QgbPtTKEQSR0cQXn6u+JFIVSzkJfd+YHy2UvF//znEQF125KeZwowvFiUZAwqCKY5wGHVBCs2EwThAXVt0I8RgJhpVOr6BDs5ZdXSfeiYV82mnfNaqtWxFEGp+AM1IANrkAL3II26AAMHsEzeAVvxpPxYrwbH4vWklHMHIM/MD5/AFTflqc=</latexit>

Xv,u [0, 0, 1]

<latexit sha1_base64="SlxtEcJt04SEIcQ/gjx+Pl6Nf4U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3BPUY8OIxonlAsoTZyWwyZHZ2mekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3328ltbG5t7+R3C3v7B4dHxeOTlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDv3209cGxGrR5wk3I/oUIlQMIpWeihXL/vFkltxFyDrxMtICTI0+sWv3iBmacQVMkmN6Xpugv6UahRM8lmhlxqeUDamQ961VNGIG3+6OHVGLqwyIGGsbSkkC/X3xJRGxkyiwHZGFEdm1ZuL/3ndFMMbfypUkiJXbLkoTCXBmMz/JgOhOUM5sYQyLeythI2opgxtOgUbgrf68jppVSveVaV2XyvVy1kceTiDcyiDB9dQhztoQBMYDOEZXuHNkc6L8+58LFtzTjZzCn/gfP4APFyNCg==</latexit>

(2)

<latexit sha1_base64="9ZxwAdYknmQRoueL0FD3qNY/lxQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJe9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM5Uo0I</latexit>

(0)
<latexit sha1_base64="j73pxlx+Krgd7RmEahCZ5CQtx8I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJd9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM6140J</latexit>

(1)

<latexit sha1_base64="SG6huJMQhK2NdyhASqR2T7WygGE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXg3oMePEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh/Llea9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDGn3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXlS8q0r1vlqqlbM48nACp1AGD66hBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBPeGNCw==</latexit>

(3)

Landing Counts

Dictionary

<latexit sha1_base64="j73pxlx+Krgd7RmEahCZ5CQtx8I=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoeJd9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QM6140J</latexit>

(1)

<latexit sha1_base64="KNc5am8wBwqtotbcE/qd0Q/8srU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLgpssK9gFtKJPppB06yYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVqxttMSaV7ATVcipi3UaDkvURzGgWSd4Ppfe53n7g2QsWPOEu4H9FxLELBKFqpP4goThiVWXM+rNbcursAWSdeQWpQoDWsfg1GiqURj5FJakzfcxP0M6pRMMnnlUFqeELZlI5539KYRtz42SLynFxYZURCpe2LkSzU3xsZjYyZRYGdzCOaVS8X//P6KYZ3fibiJEUes+VHYSoJKpLfT0ZCc4ZyZgllWtishE2opgxtSxVbgrd68jrpXNW9m/r1w3Wt4RZ1lOEMzuESPLiFBjShBW1goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AeHWRVQ==</latexit>

H

u b a
u b v
v b a
v b u v

Joined Walks 
for Query 

<latexit sha1_base64="3lzQlRDgF0KEesmfyR0J5pV4G/8=">AAAB+nicbVDLSgMxFM3UV62vqS7dBItQYSiZUtRlwY3LCvYB06Fk0kwbmskMSUYpYz/FjQtF3Pol7vwb03YW2nrgcg/n3EtuTpBwpjRC31ZhY3Nre6e4W9rbPzg8ssvHHRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0Gk5u5332gUrFY3OtpQv0IjwQLGcHaSAO7XPWQgxzXd7y66ci/GNgVVEMLwHXi5qQCcrQG9ld/GJM0okITjpXyXJRoP8NSM8LprNRPFU0wmeAR9QwVOKLKzxanz+C5UYYwjKUpoeFC/b2R4UipaRSYyQjrsVr15uJ/npfq8NrPmEhSTQVZPhSmHOoYznOAQyYp0XxqCCaSmVshGWOJiTZplUwI7uqX10mnXnMva427RqXp5HEUwSk4A1XggivQBLegBdqAgEfwDF7Bm/VkvVjv1sdytGDlOyfgD6zPH8EukQg=</latexit>

([0, 0, 1], [2, 0, 0])

<latexit sha1_base64="FTTs/rXGZ6HYg45a+9BKQ2NpE04=">AAAB9HicbVBNSwMxFHxbv2r9qnr0EiyCBym7UtRjwYvHCrYW2qW8TdM2NJtdk2yhLP0dXjwo4tUf481/Y7bdg7YOBIaZ93iTCWLBtXHdb6ewtr6xuVXcLu3s7u0flA+PWjpKFGVNGolItQPUTHDJmoYbwdqxYhgGgj0G49vMf5wwpXkkH8w0Zn6IQ8kHnKKxkt8N0YwoirQ16yW9csWtunOQVeLlpAI5Gr3yV7cf0SRk0lCBWnc8NzZ+ispwKtis1E00i5GOccg6lkoMmfbTeegZObNKnwwiZZ80ZK7+3kgx1HoaBnYyC6mXvUz8z+skZnDjp1zGiWGSLg4NEkFMRLIGSJ8rRo2YWoJUcZuV0BEqpMb2VLIleMtfXiWty6p3Va3d1yr1i7yOIpzAKZyDB9dQhztoQBMoPMEzvMKbM3FenHfnYzFacPKdY/gD5/MHIU6SRw==</latexit>

Vu

b

a

c

v

d

u

<latexit sha1_base64="9pODOE3a96Fv6lo4eWlroyGmv9A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqDcLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vmjf9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aFTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ12TAFTIjJpZQpri9lbARVZQZm03JhuAtv7xK2hdV77Jaa9YqdTePowgncArn4MEV1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/jVmMug==</latexit>

?
Query

<latexit sha1_base64="omBmvcGz8LfXqtzZDDyt0b1nRXQ=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSJ4KGVXinoRCl48tmA/YLeUbJptQ7PJkmQLZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88KEM21c99vZ2Nza3tkt7BX3Dw6Pjksnp20tU0Voi0guVTfEmnImaMsww2k3URTHIaedcPww9zsTqjST4slME9qL8VCwiBFsrOQ30T0KsrQyCWb9UtmtugugdeLlpAw5Gv3SVzCQJI2pMIRjrX3PTUwvw8owwumsGKSaJpiM8ZD6lgocU93LFifP0KVVBiiSypYwaKH+nshwrPU0Dm1njM1Ir3pz8T/PT01018uYSFJDBVkuilKOjETz/9GAKUoMn1qCiWL2VkRGWGFibEpFG4K3+vI6aV9XvZtqrVkr1yt5HAU4hwu4Ag9uoQ6P0IAWEJDwDK/w5hjnxXl3PpatG04+cwZ/4Hz+ABtpkHA=</latexit>

Q = {u, v}

Prepocessing

<latexit sha1_base64="X2l3BXcxGuAm/+pnYWEIGCnqR0A=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mEmCfkSHkoecUWOlRqNfKrsVdw6ySryclCFHvV/66g1ilkYoDRNU667nJsbPqDKcCZwWe6nGhLIxHWLXUkkj1H42P3RKzq0yIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynaELzll1dJ66riXVeqjWq5dpnHUYBTOIML8OAGanAPdWgCA4RneIU359F5cd6dj0XrmpPPnMAfOJ8/p22MyA==</latexit>

Q

<latexit sha1_base64="pIGnLOGwDItXLgQyrHwhi5ZNL1I=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclJJIUZcFNy5bsA9oQ5hMJ+3QySTMTNQS8yluXCji1i9x5984abPQ1gMDh3Pu5Z45fsyoVLb9baytb2xubZd2yrt7+weHZuWoK6NEYNLBEYtE30eSMMpJR1HFSD8WBIU+Iz1/epP7vXsiJI34nZrFxA3RmNOAYqS05JmVYYjUBCOW9jMvbdceM8+s2nV7DmuVOAWpQoGWZ34NRxFOQsIVZkjKgWPHyk2RUBQzkpWHiSQxwlM0JgNNOQqJdNN59Mw608rICiKhH1fWXP29kaJQylno68k8qFz2cvE/b5Co4NpNKY8TRTheHAoSZqnIynuwRlQQrNhME4QF1VktPEECYaXbKusSnOUvr5LuRd25rDfajWqzVtRRghM4hXNw4AqacAst6ACGB3iGV3gznowX4934WIyuGcXOMfyB8fkDgZuUGg==</latexit>

XQ,x

<latexit sha1_base64="88NxTMld5tsDpwBI4ig6q3uroDE=">AAACKXicbZBLSwMxEMez9VXra9Wjl2BR6sGyK0XFU0GFeqtiH9AtJZumbWj2QTIrlqVfx4tfxYuCol79Imbb4qM6EPjPb2bIzN8NBVdgWW9GamZ2bn4hvZhZWl5ZXTPXN6oqiCRlFRqIQNZdopjgPqsAB8HqoWTEcwWruf3TpF67YVLxwL+GQciaHun6vMMpAY1aZtHxCPQoEXFp2IpO8Fda1Sl2IPgm9YTkHGC3EF+Vz/cvzjTYa5lZK2+NAv8V9kRk0STKLfPJaQc08pgPVBClGrYVQjMmEjgVbJhxIsVCQvukyxpa+sRjqhmPLh3iHU3auBNI/XzAI/pzIiaeUgPP1Z3J2mq6lsD/ao0IOsfNmPthBMyn4486kcDagMQ23OaSURADLQiVXO+KaY9IQkGbm9Em2NMn/xXVg7x9mC9cFrLF3YkdabSFtlEO2egIFVEJlVEFUXSHHtAzejHujUfj1Xgft6aMycwm+hXGxyft3abs</latexit>

Hu : Vu ! Xu(RPE-IDu)

<latexit sha1_base64="nmcM+PUfAW4kzBgjLUiiz0LeziY=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgQsqMFHVZcOOyQl8wHUomzbShmWRIMkIZ+hluXCji1q9x59+YaWehrQcCh3PuJeeeMOFMG9f9dkobm1vbO+Xdyt7+weFR9fikq2WqCO0QyaXqh1hTzgTtGGY47SeK4jjktBdO73O/90SVZlK0zSyhQYzHgkWMYGMlfxBjMyGYZ+35sFpz6+4CaJ14BalBgdaw+jUYSZLGVBjCsda+5yYmyLAyjHA6rwxSTRNMpnhMfUsFjqkOskXkObqwyghFUtknDFqovzcyHGs9i0M7mUfUq14u/uf5qYnugoyJJDVUkOVHUcqRkSi/H42YosTwmSWYKGazIjLBChNjW6rYErzVk9dJ97ru3dQbj41a86qoowxncA6X4MEtNOEBWtABAhKe4RXeHOO8OO/Ox3K05BQ7p/AHzucPiX2RXQ==</latexit>

T

<latexit sha1_base64="mIeeLlPxa+eRg62Qr9ew94KaWQE=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLixmUF+4A2lMl00g6dTMLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvPHFtRKwecZpwP6IjJULBKFqp148ojhmV2e1sUK25dXcOskq8gtSgQHNQ/eoPY5ZGXCGT1Jie5yboZ1SjYJLPKv3U8ISyCR3xnqWKRtz42TzyjJxZZUjCWNunkMzV3xsZjYyZRoGdzCOaZS8X//N6KYY3fiZUkiJXbPFRmEqCMcnvJ0OhOUM5tYQyLWxWwsZUU4a2pYotwVs+eZW0L+reVf3y4bLWcIs6ynACp3AOHlxDA+6hCS1gEMMzvMKbg86L8+58LEZLTrFzDH/gfP4AbdKRTg==</latexit>

A

<latexit sha1_base64="jXyNucuYOdThS3wDwfYqyuoW30E=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFcSEmkqMuCG5cV7APaUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeIJHCoOt+O2vrG5tb26Wd8u7e/sFh5ei4beJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3OV+54lrI2L1iNOE+xEdKREKRtFKvX5EccyozLqzQaXq1tw5yCrxClKFAs1B5as/jFkacYVMUmN6npugn1GNgkk+K/dTwxPKJnTEe5YqGnHjZ/PIM3JulSEJY22fQjJXf29kNDJmGgV2Mo9olr1c/M/rpRje+plQSYpcscVHYSoJxiS/nwyF5gzl1BLKtLBZCRtTTRnalsq2BG/55FXSvqp517X6Q73auCzqKMEpnMEFeHADDbiHJrSAQQzP8ApvDjovzrvzsRhdc4qdE/gD5/MHj5GRYQ==</latexit>

X

Figure 3: An Illustration of Joining RPE into Query-level
RPEs with the Support of Walk-based Subgraph Storage.
resolves the computational problem caused by the long-tailed dis-
tribution of node degrees. More importantly, the collected walks
grouped by their starting nodes can be shared and reused among
di!erent queries. Our design decouples SGRL from redundant sub-
graph extraction and enables the reusability of preprocessed data.
We summarize the preprocessing routines with the support of hash-
indexed storage in Algorithm 1 and introduce the speci"cs next.

Walk Sampling.During preprocessing, SUREL samples!-many
𝑀-step walks for every node in a given graph. As Fig. 3 (upper left)
shows, the sampled walks are grouped in a setW𝐿 , where# denotes
the starting node of these walks. Walk sampling can be easily di-
vided into parallelizable pieces. The parallelization is implemented
based on NumPy and OpenMP framework in C.Moreover, to further
accelerate walk sampling, we use compressed sparse row (CSR) to
represent the graph. The CSR format consists of two arrays, idxptr
of length |V| + 1 used to record the degrees of nodes, and indices
of size |E |, each row of which corresponds to the neighbor list
per node. CSR allows intensive fast access to the neighbors of a
node while keeping the memory cost low, which is vital for walk
sampling in large-scale graphs.

Relative Positional Encoding (RPE). Structural information
gets lost after breaking subgraphs into walks. SUREL compensates
such loss via RPE to locate the relative position of a node in each
sampled subgraph, which characterizes the structural contribution
of the node to its corresponding subgraph.

For each set of walksW𝐿 , we "rst establish a setV𝐿 that contains
distinct nodes appearing in W𝐿 . De"ne node-level RPE X𝐿 : V𝐿 →
R𝑀+1 as follows: for each node 𝑂 ∈ V𝐿 , a vector X𝐿,𝑁 ∈ R𝑀+1 is
assigned, where X𝐿,𝑁 [%] is the landing counts of node 𝑂 at position
% in all walks of W𝐿 . In SUREL, RPE can be computed on the #y as
walks get sampled, thus resulting in nearly zero extra computational
cost. The set of walks W𝐿 paired with the RPE X𝐿 essentially
characterize a sub-sampled subgraph around the node #. Next, we
present a dedicated data structure to host W𝐿 and X𝐿 altogether.

Algorithm 1: Data Preprocessing in SUREL
Input: Graph G; number of walks! ; step of walks𝑀
Output: Associative array A, RPE array T

1 Initialize the array A and T , the dictionary H
2 for each node # ∈ G do
3 Run! times𝑀-step random walks on G as a set of walk

W𝐿 ∈ Z$×𝑀 ;
4 Add the key V𝐿 = set(W𝐿 ) to H𝐿 ;
5 Calculate RPE for ∀𝑂 ∈ V𝐿 , save the value X𝐿,𝑁 to T ,

and write its index in T as RPE-ID𝐿,𝑁 back to H𝐿 (𝑂);
6 Insert {# : (W𝐿 ,H𝐿 )} to A
7 end
8 Prune T and update the value of H by re-indexing.

3.3 Walk-based Subgraph Storage
It is easy to manage the collected set of walks due to its regularity.
An𝑀∗!-sized chunk is allocated to each set of walks, which assists
to speed up data fetching. How to organize node-level RPE presents
a real challenge because the cardinality of the set |V𝐿 | varies from
node to node. One naïve way to avoid such irregularity is to directly
scatter these RPEs back to nodes in previously collected walks. But,
this gives an𝑀 ∗! ∗ (𝑀 + 1) tensor, resulting in an unrealizable
memory need. Moreover, it loses track of node IDs in walks that
are needed for joining subgraphs later.

We use an associative array A to organize all walk-based sub-
graphs as shown in the upper part of Fig. 3. For each node # ∈ V ,
its corresponding entry in A is a node-level subgraph formed as
a tuple (W𝐿 ,H𝐿 ). Here,W𝐿 is a set of walks starting from #, and
H𝐿 is a dictionary that maps the unique node set V𝐿 ofW𝐿 to its
corresponding node-level RPE X𝐿 . The use of dictionary resolves
irregularities in V𝐿 mentioned above, while maintaining the con-
nection between node IDs and their RPEs. In addition, array T
is introduced to store RPE values centrally, rather than scattered
across dictionaries. As Fig. 3 (upper right) shows, the value ofH𝐿 (𝑂)
is now replaced with the index of the RPE value X𝐿,𝑁 stored in T
accordingly, noted as RPE-ID𝐿,𝑁 . This design overall guarantees the
access of RPE in 𝑄 (1) time.

The aboveA andH𝐿 are built on top of uthash’s macros 1, with
extended support for arbitrary insertions and deletions of key–value
pairs. It o!ers data access and search in𝑄 (1) time on average, which
is about as good as the direct address table but greatly reduces
the space wastage. In particular, it has no dependency or need
for communication between multiple hash queries, thus can be
pleasingly executed in parallel. Both A and H𝐿 are stored in RAM
on the CPU side. As we observed in Fig. 3, there are many repeated
RPE values. Once all nodes are sampled, the array T can be pruned
to remove duplicates. RPE-IDs will be updated synchronously when
T is reindexed. For example, both node ' and 𝑆 have the RPE value
of [0, 0, 1], whose index in T is (1) after pruning. Thus, bothH𝐿 (')
andH𝐿 (𝑆) are assigned to the new RPE-ID as (1). The shape of T
is regular and its size is usually small after pruning, which can be
fully loaded in GPU. In practice, we found that pining RPEs in GPU
memory is critical, as it can signi"cantly reduce the communication
cost of moving data back and forth between RAM and SDRAM.
1https://troydhanson.github.io/uthash/
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• Walk-based Subgraph Extraction
• Sample multiple walks for each query node

• Join walks to generate a subgraph

Query

Join



Generation: SUREL [VLDB’23]

Subgraph Extraction

H Yin et al, "Algorithm and system co-design for efficient subgraph-based graph representation learning", VLDB’22. 
H Yin et al, "SUREL+: Moving from Walks to Sets for Scalable Subgraph-Based Graph Representation Learning", VLDB’23. 

indptr

indices

SFptr

<latexit sha1_base64="rtnsxdSr8q6K38e/u67p81+KjOs=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsJu3SzSbuToRS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O4WNza3tneJuaW//4PCofHzSNkmmObR4IhPdDZgBKRS0UKCEbqqBxYGETjC+nfudJ9BGJOoBJyn4MRsqEQnO0ErdfggS2SAblCtu1V2ArhMvJxWSozkof/XDhGcxKOSSGdPz3BT9KdMouIRZqZ8ZSBkfsyH0LFUsBuNPF/fO6IVVQhol2pZCulB/T0xZbMwkDmxnzHBkVr25+J/XyzC68adCpRmC4stFUSYpJnT+PA2FBo5yYgnjWthbKR8xzTjaiEo2BG/15XXSrlW9q2r9vl5p1PI4iuSMnJNL4pFr0iB3pElahBNJnskreXMenRfn3flYthacfOaU/IHz+QMgIY/9</latexit>

δu
<latexit sha1_base64="UsfJQ4UEPgrbsRBhKFY1M71Catw=">AAAB83icbVDLSsNAFL2pr1pfVZduBosgCCUpRV0W3LisYB/QhDKZTNqhk0mYh1BCf8ONC0Xc+jPu/BunbRbaeuDC4Zx7ufeeMONMadf9dkobm1vbO+Xdyt7+weFR9fikq1IjCe2QlKeyH2JFORO0o5nmtJ9JipOQ0144uZv7vScqFUvFo55mNEjwSLCYEayt5PsR5RoPc3PlzYbVmlt3F0DrxCtIDQq0h9UvP0qJSajQhGOlBp6b6SDHUjPC6aziG0UzTCZ4RAeWCpxQFeSLm2fowioRilNpS2i0UH9P5DhRapqEtjPBeqxWvbn4nzcwOr4NciYyo6kgy0Wx4UinaB4AipikRPOpJZhIZm9FZIwlJtrGVLEheKsvr5Nuo+5d15sPzVqrUcRRhjM4h0vw4AZacA9t6ACBDJ7hFd4c47w4787HsrXkFDOn8AfO5w/GSZF5</latexit>

δu+1

<latexit sha1_base64="BbuOORZM/dsowOnDPWUnx+i0Qko=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUpINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak1a+V6NY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8AwXuM3g==</latexit>a <latexit sha1_base64="E3zCA7LSt9earYzmAkysABDaYeI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUZINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak1a+V6NY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8AxIOM4A==</latexit>c <latexit sha1_base64="YT1MzKt2K7PhNCd3mL3vdNT2Re0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUxEGp7FbcBcg68XJShhyNQemrP4xZGqE0TFCte56bGD+jynAmcFbspxoTyiZ0hD1LJY1Q+9ni0Bm5tMqQhLGyJQ1ZqL8nMhppPY0C2xlRM9ar3lz8z+ulJrz1My6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmhD8FZfXiftasW7rtSatXK9msdRgHO4gCvw4AbqcA8NaAEDhGd4hTfn0Xlx3p2PZeuGk8+cwR84nz/Hi4zi</latexit>e <latexit sha1_base64="TOakcU0S+nmLsBJqNb/8T9MDpAw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUTAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJr1sr1ah5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4A38uM8g==</latexit>u

structural
features

<latexit sha1_base64="8IeOpsZBlktdHVfcwQrSNfuT58Q=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdUtRjwYvHCvYD2qVk02wbms0uyaxQlv4ILx4U8erv8ea/MW33oK0vBB7vzTAzL0ikMOi6305hY3Nre6e4W9rbPzg8Kh+ftE2casZbLJax7gbUcCkUb6FAybuJ5jQKJO8Ek7u533ni2ohYPeI04X5ER0qEglG0UqfnXtnnD8oVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1usOyMXVhmSMNb2KyQL9XdHRiNjplFgKyOKY7PqzcX/vF6K4a2fCZWkyBVbDgpTSTAm89vJUGjOUE4toUwLuythY6opQ5tQyYbgrZ68Ttq1qnddrT/UK41aHkcRzuAcLsGDG2jAPTShBQwm8Ayv8OYkzovz7nwsSwtO3nMKf+B8/gCHdI5Z</latexit>

[0, 0, 0]
<latexit sha1_base64="EYNHVMB2PYEB7ZNIVep/emKywpQ=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KCUpRT0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777Wxsbm3v7Bb2ivsHh0fHpZPTtolTzXiLxTLW3YAaLoXiLRQoeTfRnEaB5J1gcjf3O09cGxGrR5wm3I/oSIlQMIpW6vTcilfx/EGp7FbdBcg68XJShhzNQemrP4xZGnGFTFJjep6boJ9RjYJJPiv2U8MTyiZ0xHuWKhpx42eLc2fk0ipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN76mVBJilyx5aIwlQRjMv+dDIXmDOXUEsq0sLcSNqaaMrQJFW0I3urL66Rdq3rX1fpDvdyo5XEU4Bwu4Ao8uIEG3EMTWsBgAs/wCm9O4rw4787HsnXDyWfO4A+czx+KgI5b</latexit>

[0, 1, 1]
<latexit sha1_base64="dNyXJfEkLWc4EaumTG6k8SXViXk=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KCUpRT0WvHisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777Wxsbm3v7Bb2ivsHh0fHpZPTtolTzXiLxTLW3YAaLoXiLRQoeTfRnEaB5J1gcjf3O09cGxGrR5wm3I/oSIlQMIpW6vTcilvx/EGp7FbdBcg68XJShhzNQemrP4xZGnGFTFJjep6boJ9RjYJJPiv2U8MTyiZ0xHuWKhpx42eLc2fk0ipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN76mVBJilyx5aIwlQRjMv+dDIXmDOXUEsq0sLcSNqaaMrQJFW0I3urL66Rdq3rX1fpDvdyo5XEU4Bwu4Ao8uIEG3EMTWsBgAs/wCm9O4rw4787HsnXDyWfO4A+czx+I+Y5a</latexit>

[0, 0, 1]
<latexit sha1_base64="C4Qe2IzcK6nIgl9dRbat8Z8afTU=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KCUpRT0WvHisYD+gDWWznbRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz329nY3Nre2S3sFfcPDo+OSyenbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNM7uZ+5wmV5rF8NNME/YiOJA85o8ZKnZ5bqVVcf1Aqu1V3AbJOvJyUIUdzUPrqD2OWRigNE1Trnucmxs+oMpwJnBX7qcaEsgkdYc9SSSPUfrY4d0YurTIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCW/9jMskNSjZclGYCmJiMv+dDLlCZsTUEsoUt7cSNqaKMmMTKtoQvNWX10m7VvWuq/WHerlRy+MowDlcwBV4cAMNuIcmtIDBBJ7hFd6cxHlx3p2PZeuGk8+cwR84nz+Kgo5b</latexit>

[0, 2, 0]
<latexit sha1_base64="Q42ODxDLZeI+r9ZDowEQXwPv4yo=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBQym7tajHghePFewHbJeSTbNtaJJdkqxQlv4ILx4U8erv8ea/MW33oK0PBh7vzTAzL0w408Z1v53CxubW9k5xt7S3f3B4VD4+6eg4VYS2Scxj1QuxppxJ2jbMcNpLFMUi5LQbTu7mfveJKs1i+WimCQ0EHkkWMYKNlbr+VdWtusGgXHFr7gJonXg5qUCO1qD81R/GJBVUGsKx1r7nJibIsDKMcDor9VNNE0wmeER9SyUWVAfZ4twZurDKEEWxsiUNWqi/JzIstJ6K0HYKbMZ61ZuL/3l+aqLbIGMySQ2VZLkoSjkyMZr/joZMUWL41BJMFLO3IjLGChNjEyrZELzVl9dJp17zrmuNh0alWc/jKMIZnMMleHADTbiHFrSBwASe4RXenMR5cd6dj2VrwclnTuEPnM8fjA+OXA==</latexit>

[3, 0, 0] <latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .

<latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .

<latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .<latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .

<latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .

<latexit sha1_base64="TKsJBOWo2DEu5CzKM3tc/GD1dTM=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KUoh4LXjxWMK3QhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfn+YoBlUa27dXYCsE68gNSjQHlS/bI5lMVfIJDWm57kpBjnVKJjks0o/MzylbEJHvGepojE3Qb5YdkYurDIkUaLtU0gW6u9ETmNjpnFoJ2OKY7PqzcX/vF6G0U2QC5VmyBVbfhRlkmBC5peTodCcoZxaQpkWdlfCxlRThrafii3BWz15nXQade+q3rxv1lqNoo4ynME5XIIH19CCO2iDDwwEPMMrvDnKeXHenY/laMkpMqfwB87nD++Gjrs=</latexit>. . .<latexit sha1_base64="Qs6n4RwB+CFBK1oj4Hdm9LR2mqk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJr1sr1ah5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AdzeMrQ==</latexit>0
<latexit sha1_base64="pZVftJAb8scZJUH5cRivyOrxM3o=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIsgCCUpRT0WvHisYD+gCWWzmbRLN5uwuxFK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzgpQzpR3n2yptbG5t75R3K3v7B4dH1eOTrkoySbFDE57IfkAUciawo5nm2E8lkjjg2Asmd3O/94RSsUQ86mmKfkxGgkWMEm0kzwuRazLMxZU7G1ZrTt1ZwF4nbkFqUKA9rH55YUKzGIWmnCg1cJ1U+zmRmlGOs4qXKUwJnZARDgwVJEbl54ubZ/aFUUI7SqQpoe2F+nsiJ7FS0zgwnTHRY7XqzcX/vEGmo1s/ZyLNNAq6XBRl3NaJPQ/ADplEqvnUEEIlM7fadEwkodrEVDEhuKsvr5Nuo+5e15sPzVqrUcRRhjM4h0tw4QZacA9t6ACFFJ7hFd6szHqx3q2PZWvJKmZO4Q+szx+7mJFy</latexit>

δn+1

<latexit sha1_base64="UTTW8TwmJMvMM1ae8fIjYtRUlgU=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVJJS1GPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPTQGFaqXs1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8z0W2Qc5lmBiVbLYoyQUxCFl+TEVfIjJhZQpni9lbCJlRRZmw2rg3BX395k3TqNf+61qg260UYZTiHC7gCH26gCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBxLti4c=</latexit>

4

<latexit sha1_base64="/O1naij1nKurRkivzO7VVgMfYqc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsNu3azSbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O4WNza3tneJuaW//4PCofHzSNkmmGW+xRCa6G1DDpVC8hQIl76aa0ziQvBOMb+d+54lrIxL1gJOU+zEdKhEJRtFK7X7IJdJBueJW3QXIOvFyUoEczUH5qx8mLIu5QiapMT3PTdGfUo2CST4r9TPDU8rGdMh7lioac+NPF9fOyIVVQhIl2pZCslB/T0xpbMwkDmxnTHFkVr25+J/XyzC68adCpRlyxZaLokwSTMj8dRIKzRnKiSWUaWFvJWxENWVoAyrZELzVl9dJu1b1rqr1+3qlUcvjKMIZnMMleHANDbiDJrSAwSM8wyu8OYnz4rw7H8vWgpPPnMIfOJ8/j6qPFQ==</latexit>
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<latexit sha1_base64="ZTWl+TRA+3dt5STjLwjRKQISDe4=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DevCYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8MJME/YgOJQ85o8ZKjbt+seSW3QXIOvEyUoIM9X7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhjT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvatytVEt1SpZHHk4g3O4BA+uoQb3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AZWHjME=</latexit>
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<latexit sha1_base64="Ml+ZlczZd3N8OPIUSRJ5RFH3XRs=">AAACAnicbVBNS8NAEN34WetX1JN4CVbBU0mkqMeCFy9CBfuBTQib7aZdutmE3YlYQvDiX/HiQRGv/gpv/hs3bQ/a+mDg8d4MM/OChDMFtv1tLCwuLa+sltbK6xubW9vmzm5LxakktEliHstOgBXlTNAmMOC0k0iKo4DTdjC8LPz2PZWKxeIWRgn1ItwXLGQEg5Z8c9+NMAwI5tld7mcu0AfIrplSee6bFbtqj2HNE2dKKmiKhm9+ub2YpBEVQDhWquvYCXgZlsAIp3nZTRVNMBniPu1qKnBElZeNX8itY630rDCWugRYY/X3RIYjpUZRoDuLg9WsV4j/ed0UwgsvYyJJgQoyWRSm3ILYKvKwekxSAnykCSaS6VstMsASE9CplXUIzuzL86R1WnXOqrWbWqV+NI2jhA7QITpBDjpHdXSFGqiJCHpEz+gVvRlPxovxbnxMWheM6cwe+gPj8wegB5gk</latexit>

ZMiss

<latexit sha1_base64="Gz6v//K4FSmaPIbHkZwPcu8dhYg=">AAAB9HicbVBNS8NAEJ34WetX1aOXYBE8laQU9VhQxGNF+wFtKJvtpl262cTdSbGE/A4vHhTx6o/x5r9x+3HQ1gcDj/dmmJnnx4JrdJxva2V1bX1jM7eV397Z3dsvHBw2dJQoyuo0EpFq+UQzwSWrI0fBWrFiJPQFa/rDq4nfHDGleSQfcBwzLyR9yQNOCRrJu+6mHWRPmN7fZFm3UHRKzhT2MnHnpAhz1LqFr04voknIJFJBtG67ToxeShRyKliW7ySaxYQOSZ+1DZUkZNpLp0dn9qlRenYQKVMS7an6eyIlodbj0DedIcGBXvQm4n9eO8Hg0ku5jBNkks4WBYmwMbInCdg9rhhFMTaEUMXNrTYdEEUompzyJgR38eVl0iiX3PNS5a5SrJbnceTgGE7gDFy4gCrcQg3qQOERnuEV3qyR9WK9Wx+z1hVrPnMEf2B9/gARqZJC</latexit>
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<latexit sha1_base64="SLzAJYJLRKrlI2YvaH7SMJOjsUw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cV7QPaoWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU1FGiGDZYJCLVDqhGwSU2DDcC27FCGgYCW8H4NvNbE1SaR/LRTGP0QzqUfMAZNVbyuyE1I0ZF+jDrJb1yxa26c5BV4uWkAjnqvfJXtx+xJERpmKBadzw3Nn5KleFM4KzUTTTGlI3pEDuWShqi9tN56Bk5s0qfDCJlnzRkrv7eSGmo9TQM7GQWUi97mfif10nM4MZPuYwTg5ItDg0SQUxEsgZInytkRkwtoUxxm5WwEVWUGdtTyZbgLX95lTQvqt5V9fL+slJz8zqKcAKncA4eXEMN7qAODWDwBM/wCm/OxHlx3p2PxWjByXeO4Q+czx8d7ZJI</latexit>
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Zu,a,Zu,v

<latexit sha1_base64="6ega4HfYFPMyNgvLbteCf8ud4Uc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXvSWgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+d++wmV5rF8MJME/YgOJQ85o8ZKjft+seSW3QXIOvEyUoIM9X7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhjT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvatytVEt1SpZHHk4g3O4BA+uoQZ3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AZ0bjMY=</latexit>

I <latexit sha1_base64="gMqDM02K31sN9iRxh23E7TRnJDg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxCIo8ENmR2aGBkdnYzM0tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzlo4SxbDJIhGpTkA1Ci6xabgR2IkV0jAQ2A4m9wu/PUWleSQfzSxGP6QjyYecUWOlxrRfLLlldwmySbyMlCBDvV/86g0iloQoDRNU667nxsZPqTKcCZwXeonGmLIJHWHXUklD1H66PHROrqwyIMNI2ZKGLNXfEykNtZ6Fge0MqRnrdW8h/ud1EzO881Mu48SgZKtFw0QQE5HF12TAFTIjZpZQpri9lbAxVZQZm03BhuCtv7xJWpWyd1OuNqqlWiWLIw8XcAnX4MEt1OAB6tAEBgjP8ApvzpPz4rw7H6vWnJPNnMMfOJ8/4U+M8w==</latexit>v

<latexit sha1_base64="vE/iYxHLbdiJOoPF/qCGrkfIPuY=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU9AalsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJr1sr1ah5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AeLuMrg==</latexit>

1
<latexit sha1_base64="D63aOGGp/QltT+BNNBGTvxhbqfE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRqEcSLx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFS46pfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1460+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtCpl77pcbVRLtUoWRx7O4BwuwYMbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AHvDjLA=</latexit>

3
<latexit sha1_base64="8ChveHcb/5BrQ0oyJF6BwmkzLdU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyvedaXWrJXr1TyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBej+Mrw==</latexit>
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Figure 4: Node set S! and its associated structural features Z!

stored in SpG. Here, 𝐿SF shows the landing counts of nodes at di!er-
ent steps in sampled walks as an example, which can be normalized
later to landing probabilities as structural features.

a node set S𝑀 comprising unique nodes sampled from the neigh-
borhood of node 𝐿 and (2) the associated structural features Z𝑀
that re!ects the position in G𝑀 of each sampled node in S𝑀 .

Set Samplers Two types of set samplers are adopted. The "rst
type, namedWalk-based Sampler, is to sample short-step random
walks and eliminate repeated nodes during sampling. The second
type, named Metric-based Sampler, is based on more principled
graph metrics that measure the proximity between neighboring
nodes and the seed node, such as personalized PageRank (PPR)
scores [19] or short path distances. Speci"cally, the walk-based
sampler runs 𝑀-many#-step random walks, starting from each
seed 𝐿 in parallel on the graph G, and then puts only distinct nodes
in these walks into the set S𝑀 . The metric-based sampler, taking
PPR-based [4] as an example, "rst runs the push-!ow algorithm [2]
to obtain an approximation of the PPR vector for each seed 𝐿, and
then selects the top-𝑂 nodes with the highest PPR scores into the set
S𝑀 . Mathematically, PPR scores are convergent landing probabilities
of seeded random walks that reach in"nite steps. Therefore, these
two samplers complement each other by leveraging either more
local or global graph structures. We use hyper-parameters 𝑀 ,#
to control random walks, and 𝑂 to control metric-based sampler,
which are all set as some constants in practice. The complexity of
the above o#ine sampling procedures is % ( |V|).

Structure Encoders The structure encoder is to construct struc-
tural featuresZ𝑀,𝑁 → R𝑂 for each node 𝑄 in the sampled node set
S𝑀 . These features are crucial for inference tasks involving mul-
tiple nodes [52], and can be conceptually understood as de"ning
the position of a node 𝑄 relative to a seed node 𝐿 within its neigh-
borhood. One possible choice is landing probabilities of random
walk [26, 27, 47]: each element Z𝑀,𝑁 ['] stores the counts of node
𝑄 landed at step ' of all walks sampled by the walk-based sampler
starting at the seed 𝐿 divided by the total number of walks. By
de"nition, landing probabilities (LPs) can be obtained together with
walk sampling. Another option is the shortest path distance (SPD)
between 𝑄 and 𝐿 [27, 50, 52], which records their relative position
in terms of quantitative reachability. PPR scores [19] is also a useful
structural feature and can be computed along the running of a PPR-
based sampler. Later, we denote the group of structural features for
all nodes in S𝑀 as Z𝑀 = {Z𝑀,𝑁 |𝑄 → S𝑀 }.

3.2 Set-based Storage - SpG
Node-set-based representations have advantages in terms of reusabil-
ity and eliminating redundant nodes. However, the uneven sizes of
sampled node sets pose great challenges to their storage and fast

Table 1: Complexity comparison of GRL models. Suppose using
% ( | E | )-many queries, SGRLs use partial edges (𝑄 " | E |) for train-
ing. ' and 𝑆 denote the average size of extracted subgraphs and
sampled node sets, respectively. ) is the number of layers. * and 𝑂
are respective dimensions of node and structural features. Assume
* is "xed for all layers. Both SUREL and SUREL+ use the walk-based
sampler for+-many,-step walks. - is the number of distinct 𝑂-dim
structural features. ."+1 is the size sum of all sampled node sets.

Methods GNN [22] SEAL [50, 52] SUREL [47] SUREL+
Structure % (|V| + |E|) % (𝑆 |E |) % (#𝑀 |V|) % ()/+1)
Feature % (* |V|) % (+𝑆 |E |) % (+#𝑀 |V|) % ()/+1 + , ∗ +)
Time % (|E |𝑋* + |E|𝑋*2) % (.𝑆)*2) % (.#𝑀*2) % (.𝑂*2)

access. Note that these node sets must be frequently visited in sub-
sequent online phases for inference. To overcome these obstacles,
SUREL+ devises a specialized compressed sparse row (CSR) format
called SpG, which reorganizes the storage of node sets and their
structural features in a memory-e$cient manner, as depicted in
Fig. 4. Speci"cally, the node set S𝑀 and its structural featuresZ𝑀
are stored as a row of SpG, denoted as SpG[𝐿, :]. Multiple node sets
and their associated structural features are consolidated into three
contiguous arrays:

• indptr ) → Z/+1, an integer array tracks the starting index of
each stored node set (row). It records the cumulative sum of
the sizes of all node sets S𝑀 , ∀𝐿 → V , e.g., )𝑀+1 = )𝑀 + |S𝑀 |,
where |S𝑀 | represents the size of the set S𝑀 . The total number
of sampled nodes stored in SpG is )/+1;

• indices / → Z."+1 , a coalesce array of all node sets S𝑀 , ∀𝐿 → V .
The segment / [)𝑀 : )𝑀+1] corresponds to the indices of sampled
nodes of S𝑀 stored in sorted order. This ordering is particularly
useful for speeding up the join operation discussed in Sec. 3.3.

• SFptr 0 → R."+1 , a pointer array contains the indices of the
structural featuresZ𝑀 stored in the array 0SF. The purpose of
0SF is to eliminate duplicate structural features, typically reside
in GPU memory. This secondary index can further compress
memory needs, especially when using LPs/SPDs that are likely
to have many repeated values, but it is not necessary when using
PPR scores since they tend to have distinct values.

Regarding the cost of SpG, indptr array is of size |V| + 1, and
the size of both indices and SFptr arrays is )/+1. The compressed
encoding array 0SF, has a size of , ∗ + , where , is the number of
distinct structural features and + denotes feature dimension. The
overall complexity of this data structure is % ( |V| + )/+1 + , ∗ +).

Comparison with Other Methods Table 1 summarizes the
space and time complexity comparison of GRL methods. By adopt-
ing the walk-based sampler (sampling𝑀-many#-step walks), )/+1
amounts to approximately one-"fth of #𝑀 |V| used by SUREL,
while the metric-based sampler (sampling top-𝑂 PPR scores) results
in )/+1 = 𝑂 |V| and 𝑂 < #𝑀 in general. Both values are substan-
tially lower than % (𝑆 |E |) used by SEAL, where 𝑆 is the average
size of sampled subgraphs. For hosting structural features, SUREL+
employs the secondary index SFptr 0 and retains only distinct
structural features in 0SF to further reduce the memory footprint.
Since , typically remains independent of |V| in practice, SUREL+
equipped with SpG is highly suitable for handling large graphs.
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Walk-based Storage
• Fast neighbor access with pointer

• Reduce feature overlap

Sparse Join Operator
• Remove duplicate nodes

• Reduce sparse storage
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Generation: GENTI [VLDB’24]

Subgraph Extraction

Z Yu et al, "GENTI: GPU-Powered Walk-Based Subgraph Extraction 
for Scalable Representation Learning on Dynamic Graphs", VLDB’24. 

• Dynamic Subgraph Extraction: streaming of subgraph sampling & join

Standard
Process

High CPU usage

GENTI
CPU-GPU pipeline



Generation: GENTI [VLDB’24]

Subgraph Extraction

Z Yu et al, "GENTI: GPU-Powered Walk-Based Subgraph Extraction 
for Scalable Representation Learning on Dynamic Graphs", VLDB’24. 

Time-based Storage
• Fast sampling across buckets

• Constrain time by sliding window

Batch Join GPU Operator
• Dense operations on GPU

• Complexity: reduce from 𝐿 to 𝐿



Slicing: TIGER [VLDB’24]

• Subgraph extraction on heterogeneous graph: based on edge triples

• Bottleneck: element lookup on disk

• Slicing: store elements of same triples together

Subgraph Extraction

K Wang et al, "TIGER: Training Inductive Graph Neural Network 
for Large-Scale Knowledge Graph Reasoning", VLDB’24. 

Simple Extraction
o Random disk access

Slice-based Extraction
o Sequential disk access
o Slicing overhead

NP-Hard



Slicing: TIGER [VLDB’24]

• Slicing: match-then-generate to reduce overlap storage

• Caching: recently accessed elements in memory

Subgraph Extraction

K Wang et al, "TIGER: Training Inductive Graph Neural Network 
for Large-Scale Knowledge Graph Reasoning", VLDB’24. 

Figure 5: Graphical illustration of subgraph processing.

Algorithm 1: Dynamic Caching
Input :Query entities 𝐿 of one super-batch, slice mapping

dictionary𝑀 .
1 Get the list of slice IDs from𝑀 for each query entity 𝑁 in 𝐿 ;
2 Precompute the initializing slice IDs 𝑂𝐿𝑀𝐿𝑁 ;
3 Gather slices S𝐿𝑀𝐿𝑁 from SSDs corresponding to 𝑂𝐿𝑀𝐿𝑁 ;
4 Initialize Slice Cache: S𝑂𝑃 → S𝐿𝑀𝐿𝑁 ;
5 Precompute the changeset 𝑃𝑄 of each mini-batch 𝑄;
6 foreach mini-batch 𝑄 of the super-batch do
7 Gather slices S𝑄 for the mini-batch query entities 𝐿𝑄 ;
8 Train the GNN model with 𝐿𝑄 and S𝑄 ;
9 Evict slices from Slice Cache: S↑

𝑂𝑃 → Evict(S𝑂𝑃,𝑃𝑄 );
10 Gather inserted slices from S𝑄 : S𝑅𝑆 → Gather(S𝑄 ,𝑃𝑄 );
11 Update Slice Cache: S𝑂𝑃 → Update(S𝑅𝑆 ,S↑

𝑂𝑃,𝑃𝑄 );
12 Empty the Slice Cache;

utilized in the !rst few batches are prefetched as the initialization
of Slice Cache (in Lines 2-4). Then, given the slice IDs required
by each mini-batch, TIGER follows Ginex to precompute which
slices to insert into and evict from the Slice Cache (in Line 5). The
precomputation results, called changesets, will be utilized in the
Slice Cache Update stage at each mini-batch loop. When updating
the cache guided by the changeset (in Lines 9-11), slices in the
cache that are marked for eviction are replaced with slices from the
current batch that have been loaded into the main memory.

Unlike Ginex [35], which focuses on caching nodes’ feature vec-
tors, integrating the dynamic caching mechanism into TIGER intro-
duces three principal challenges for the subgraph slicing algorithm:
(1) Subgraph slicing, being more time-consuming than processing
feature vectors, requires further acceleration techniques to sustain
training e"ciency. (2) The caching mechanism’s e#ect hinges on
the quality of subgraph slicing, as slices with greater reusability
would improve cache hit ratios. (3) This mechanism necessitates
that cached slices have a !xed length, similar to feature vectors,
demanding a balance between slice redundancy and utilization.

4 ATOM-LEVEL SUBGRAPH SLICING
4.1 Problem Formulation
To reduce the time complexity and memory footprint of the sub-
graph slicing process, we !rst convert the triple-level subgraph
slicing problem to the atom level. Ignoring the speci!c triple data,
we can represent an atom-based subgraph as 𝑅𝑇 = {(𝑆𝑃,𝑇𝑃) |𝑆𝑃 ↓

N
𝑈↔1
𝑇 ,𝑇𝑃 = |G

1
𝑉𝐿 |}. The subgraph size |𝑅𝑇 | =

)︄
𝑃↓𝑊𝑀

𝑇𝑃 and 𝑇𝑃

refers to the atom weight (the number of atom triples). Formally,
the atom-level subgraph slicing problem is de!ned as follows:

D!"#$#%#&$ 2 (A%&’()!*!) S+,-./01 S)#2#$-). Given a pre-
determined slice size 𝑈 and a collection of query entities 𝐿 , the cor-
responding atom-based subgraphs are G = {𝑅𝑇 |𝑁 ↓ 𝐿} and the
collection of atoms appearing in G are denoted as A = {𝑉 |𝑇𝑃 < 𝑈}.
The atom-level subgraph slicing problem is to construct a collection of
slices S satisfying that: each slice 𝑂𝐿 ↓ S consists of multiple distinct
atoms in A and the total weight of atoms |𝑂𝐿 | =

)︄
𝑃↓𝑋𝑁 𝑇𝑃 ↭ 𝑈; any

subgraph 𝑅𝑇 ↓ G can be composed by a set of non-overlapping slices
S𝑇 ↗ S, i.e., 𝑅𝑇 =

[︄
S𝑇 .

Optimization Target. Unlike graph partitioning algorithms that
divide the entire graph into multiple disjoint parts, the stored slices
are allowed to overlap with the other, enabling the possibility of
being reused by various KG subgraphs. Given a collection of sub-
graphs G, the optimization of atom-level subgraph slicing aims
to load all subgraph triples by visiting as few slices as possible
thereby reducing SSD data communication. When the sizes of sub-
graphs and slices are given, the number of required slices is de-
termined by two aspects of slice quality: Slice Redundancy and
Slice Utilization. The lower slice redundancy is better, indicating
less zero-!lling/redundant space in each slice. Meanwhile, reusing
more slices in multiple overlapping subgraphs can also decrease
the total required slices. Therefore, we can de!ne the optimization
target, named Slicing Score, as follows:

𝑌 (G, S,𝑍) =
|S |)︄

𝑂𝑀 ↓G
]︄
|𝑊𝑀 |/𝑍

⌊︄ =

)︄
𝑂𝑀 ↓G |S𝑀 |)︄

𝑂𝑀 ↓G
]︄
|𝑊𝑀 |/𝑍

⌊︄
Slice Redundancy Rate 𝑃𝑄

↘
|S |)︄

𝑂𝑀 ↓G |S𝑀 |
Slice Utilization Rate 𝑃𝑅

, (3)

where |G𝑇 | and |S𝑇 | denote the quantities of subgraph triples and
slices, respectively. The slicing score is the ratio between the num-
ber of distinct slices in S and the total number of the fewest slices
needed for each subgraph, which is derived from the original goal
of atom-level subgraph slicing. Interestingly, according to Equation
3, the slicing score can be decoupled into two helpful metrics: Slice
Redundancy Rate (𝑊𝑎 ) and Slice Utilization Rate (𝑊𝑏 ). The former
𝑊𝑎 compares the actual number of loaded slices to the minimum
required, where the lower 𝑊𝑎 means less redundant space in these
slices. While 𝑊𝑏 measures the ratio of distinct slices to the total
required, re$ecting slice reuse frequency in these subgraphs. There-
fore, according to the de!nitions, a subgraph slicing is optimal if
the slice set S achieves the lowest slicing score, i.e., 𝑊𝑎 ↘ 𝑊𝑏 .

T1!&.!’ 1. Minimizing 𝑊𝑎 ↘𝑊𝑏 to obtain an optimal atom-based
subgraph slicing is NP-hard.

2464



Subgraph Extraction: Takeaways

G3 [SIGMOD’23]

o 3 Parallel enhancements
o Communication overhead 

persist under full-graph 
training

Partition Generation Slicing
SUREL [VLDB’23] 
GENTI [VLDB’24]

o Generated subgraphs may 
be more expressive

o Generation and gathering 
overhead

TIGER [VLDB’24]

o On-disk subgraph extraction
o 2-stage slicing and caching 

for batter local access



Subgraph Extraction: Evaluation

• Hash: constantly fastest 
& insignificant

• Metis family: fast but less 
scalable

• Streaming family: slow & 
less scalable

Model Operations

H Yuan et al, "Comprehensive Evaluation of GNN Training Systems: A Data Management Perspective", VLDB’24. 



Subgraph Extraction: Evaluation

• Mini-batch training is more scalable than full-graph training

• Mini-batch + local sampling is effective in reducing computation

Training Schemes

S Bajaj et al, "Graph Neural Network Training Systems: A Performance Comparison of Full-Graph and Mini-Batch", VLDB’25.

Graph Neural Network Training Systems: A Performance Comparison of Full-Graph and Mini-Batch

choices given their performance bene!ts. For mini-batch training,
using the right sampling algorithm can achieve higher accuracy
than the full-graph training methods for most datasets and models.
However, some sampling algorithms show widely di"erent accura-
cies based on the dataset and sometimes converge to much lower
accuracies. This indicates that trying di"erent algorithms during
hyperparameter tuning is essential.

Overall, these results challenge the common rationale for using
full-graph training over mini-batch training, suggesting that the
expected bene!ts of avoiding sampling and its associated informa-
tion loss to achieve higher accuracy do not materialize in practice.

6 COST ANALYSIS
To support and generalize our empirical observations beyond the
speci!c hardware con!gurations and software implementations
we evaluated empirically, in this section we answer the following
questionQ6:What are the analytical performance costs of vanilla full-
graph and mini-batch training? We model the communication and
computation costs of training analytically and then evaluate the cost
of pre-processing (sampling) in mini-batch training experimentally
to complement the analysis.

Communication cost. Our analysis considers a simpli!ed model
of GNN training where the training workload is partitioned among
a set of workers𝐿 , each accessing a local memory. The communi-
cation cost is the volume of vertex feature data exchanged among
the workers. We ignore the communication cost of gradient syn-
chronization since GNN models have relatively few parameters. We
measure the communication cost to convergence rather than the
cost per epoch to account following the discussion of Section 4.1.

In full-graph training, at each layer, workers must receive the
features of all the vertices in other partitions that have neighbors
in the local partition. The communication cost is:

ωfg = 𝑀𝐿

𝑀∑
𝑁=1

∑
𝑂→𝑃

∑
𝑄→𝑅𝐿

|𝑁𝑁𝑄 |

where 𝑀𝐿 is the number of epochs to convergence, 𝑂𝑂 the set of
vertices that are remote neighbors of vertices in𝑃 , 𝑁𝑁𝑄 is the feature
vector for vertex 𝑄 at layer 𝑅 .

In mini-batch training, we model a scenario where the input
features cannot !t in the local memory of one worker and are
partitioned among workers. At each iteration, each worker must
gather the input features of all the vertices at the bottom layer of
its micro-batch. The communication cost to convergence is:

ωmb = 𝑀𝑆

𝑇∑
𝑈=1

∑
𝑂→𝑃

∑
𝑄→ (𝑉𝑀,𝐿\𝑊𝐿 )

|𝑁0𝑄 |

where 𝑀𝑆 is the number of epochs to convergence using vanilla
mini-batch training, 𝑆 is the number of iterations in an epoch,𝑇𝑈,𝑂
is the set of vertices in the micro-batch assigned to worker 𝑃 at
iteration 𝑈 , and 𝑉𝑂 is the partition of vertices assigned to worker𝑃 .

We calculate the ratio between ωfg and ωmb by considering the
same hyperparameters for both approaches, which are the same
we used for evaluating the time-to-accuracy in Section 4.1. We use

Figure 7: FG/MB ratio of communication cost. (Left: Hyper-
parameters in the appendix in table 16. Right: Default 4 par-
titions)

Figure 8: FG/MB ratio of computation cost for GraphSage.

Metis to partition the datasets [23] and run Neighborhood Sampling
for one epoch to obtain𝑇𝑈

𝑂 .
Figure 7 shows the ratio between ωfg and ωmb for di"erent datasets.

The communication cost of full-graph training is higher than that
of mini-batch training in most cases. The gap mostly depends on
the number of boundary nodes and, for mini-batch training, on
the size of the last layer of the micro-batches. In practice, mini-
batch training does not need to partition the dataset since it can
replicate commonly accessed input features in the local memory
of multiple workers. In our experimental evaluation of Section 4,
all datasets except orkut and papers100M are fully replicated, but
partial replication is often almost as e"ective [43].

In general, larger graphs can have a larger edge cut when they are
partitioned. This results in larger𝑂𝑂 , increasing the communication
cost of full-graph training ωfg. In contrast, the communication cost
of mini-batch training, ωmb, grows with (𝑇𝑈,𝑂 \𝑉𝑂), which is upper
bounded by the size of the sampled micro-batches, not by the size of
the graph. A similar e"ect is observed by increasing the number of
partitions with !xed datasets, as shown in Figure 7. This increases
the relative cost of ωfg over ωmb.

Computation cost. We now analyze the computational cost of
training with vanilla full-graph and mini-batch training. We con-
sider the same model used for the communication cost analysis.

A GNN training layer 𝑅 computes the features of vertices at layer 𝑅
based on the features of their neighbors at layer 𝑅↑1 (see section 2.1).
The computational cost to the convergence of full-graph training

Communication

Graph Neural Network Training Systems: A Performance Comparison of Full-Graph and Mini-Batch

choices given their performance bene!ts. For mini-batch training,
using the right sampling algorithm can achieve higher accuracy
than the full-graph training methods for most datasets and models.
However, some sampling algorithms show widely di"erent accura-
cies based on the dataset and sometimes converge to much lower
accuracies. This indicates that trying di"erent algorithms during
hyperparameter tuning is essential.

Overall, these results challenge the common rationale for using
full-graph training over mini-batch training, suggesting that the
expected bene!ts of avoiding sampling and its associated informa-
tion loss to achieve higher accuracy do not materialize in practice.

6 COST ANALYSIS
To support and generalize our empirical observations beyond the
speci!c hardware con!gurations and software implementations
we evaluated empirically, in this section we answer the following
questionQ6:What are the analytical performance costs of vanilla full-
graph and mini-batch training? We model the communication and
computation costs of training analytically and then evaluate the cost
of pre-processing (sampling) in mini-batch training experimentally
to complement the analysis.

Communication cost. Our analysis considers a simpli!ed model
of GNN training where the training workload is partitioned among
a set of workers𝐿 , each accessing a local memory. The communi-
cation cost is the volume of vertex feature data exchanged among
the workers. We ignore the communication cost of gradient syn-
chronization since GNN models have relatively few parameters. We
measure the communication cost to convergence rather than the
cost per epoch to account following the discussion of Section 4.1.

In full-graph training, at each layer, workers must receive the
features of all the vertices in other partitions that have neighbors
in the local partition. The communication cost is:
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where 𝑀𝐿 is the number of epochs to convergence, 𝑂𝑂 the set of
vertices that are remote neighbors of vertices in𝑃 , 𝑁𝑁𝑄 is the feature
vector for vertex 𝑄 at layer 𝑅 .

In mini-batch training, we model a scenario where the input
features cannot !t in the local memory of one worker and are
partitioned among workers. At each iteration, each worker must
gather the input features of all the vertices at the bottom layer of
its micro-batch. The communication cost to convergence is:
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where 𝑀𝑆 is the number of epochs to convergence using vanilla
mini-batch training, 𝑆 is the number of iterations in an epoch,𝑇𝑈,𝑂
is the set of vertices in the micro-batch assigned to worker 𝑃 at
iteration 𝑈 , and 𝑉𝑂 is the partition of vertices assigned to worker𝑃 .

We calculate the ratio between ωfg and ωmb by considering the
same hyperparameters for both approaches, which are the same
we used for evaluating the time-to-accuracy in Section 4.1. We use
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Metis to partition the datasets [23] and run Neighborhood Sampling
for one epoch to obtain𝑇𝑈

𝑂 .
Figure 7 shows the ratio between ωfg and ωmb for di"erent datasets.

The communication cost of full-graph training is higher than that
of mini-batch training in most cases. The gap mostly depends on
the number of boundary nodes and, for mini-batch training, on
the size of the last layer of the micro-batches. In practice, mini-
batch training does not need to partition the dataset since it can
replicate commonly accessed input features in the local memory
of multiple workers. In our experimental evaluation of Section 4,
all datasets except orkut and papers100M are fully replicated, but
partial replication is often almost as e"ective [43].

In general, larger graphs can have a larger edge cut when they are
partitioned. This results in larger𝑂𝑂 , increasing the communication
cost of full-graph training ωfg. In contrast, the communication cost
of mini-batch training, ωmb, grows with (𝑇𝑈,𝑂 \𝑉𝑂), which is upper
bounded by the size of the sampled micro-batches, not by the size of
the graph. A similar e"ect is observed by increasing the number of
partitions with !xed datasets, as shown in Figure 7. This increases
the relative cost of ωfg over ωmb.

Computation cost. We now analyze the computational cost of
training with vanilla full-graph and mini-batch training. We con-
sider the same model used for the communication cost analysis.

A GNN training layer 𝑅 computes the features of vertices at layer 𝑅
based on the features of their neighbors at layer 𝑅↑1 (see section 2.1).
The computational cost to the convergence of full-graph training

Computation



Subgraph Extraction: Applications

• Graph: integrated circuits logic gates

• Task: identify obfuscated gates & interconnections

Hardware Obfuscation Analysis

L Mankali et al, "Titan: Security Analysis of Large-Scale Hardware 
Obfuscation Using Graph Neural Networks", TIFS’22. 
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Fig. 5. Overall flow of the subgraph-classification-based attack on interconnect and gate obfuscation. The links in green and red color indicate true and
dummy connections respectively.

We model a netlist as an undirected graph G(V,E). Note
that we use an undirected format for better representation
capability [40]. Here, V denotes the set of vertices, i.e.,
gates, primary inputs (PIs), primary outputs (POs), TIEHI cells
(providing logic 1 signals), and TIELO cells (providing logic
0 signals) in the circuit, and E denotes the set of edges, i.e.,
the wires. In the case of interconnect obfuscation, E does not
include the obfuscated nets; the true nature or connectivity
has to be predicted. Therefore, the obtained graph of an
interconnect-obfuscated design is considered an incomplete
graph with missing links.

C. Problem Formulation
Attack on Interconnect Obfuscation. An adversary aims
to predict the correct connectivity in the obfuscated design
(i.e., the missing links in the graph) based on the available
connections among the nodes. As discussed in Section II-C,
the prediction of missing links in an incomplete graph (i.e.,
link prediction) can be solved using subgraph classification.
Thus, we formulate the problem of reverse-engineering the
obfuscated interconnects as a subgraph classification task.
Attack on Gate Obfuscation. The attacker aims to predict
the true type of obfuscated gates based on the available
information of other gates and the structure of the design. As
discussed in Section II-C, this problem is equivalent to node
classification and can be tackled using subgraph classification.

D. GNN-Based Attack Framework: Subgraph Classification
We develop a framework for GNN-based subgraph classifi-

cation applicable to interconnect and gate deobfuscation. Fig. 5
summarizes the steps of the attack. First, we extract subgraphs
around the target nodes (for gate obfuscation) or target links
(for interconnect obfuscation). Later, these subgraphs are given
as input to the GNN for subgraph classification. For each query
s of the obfuscated gates/nets, the subgraph-classification
framework outputs the likelihood for each corresponding class
`s 2 R1⇥m. Here, m represents the number of classes, and
each likelihood score ranges between 0 to 1. For interconnect
obfuscation, two classes are considered, i.e., link or no link.
In the case of gate obfuscation, without loss of general-
ity (w.l.o.g.) but accounting for state-of-the-art obfuscation
schemes [15], eight exemplary classes are considered, i.e.,
INV, BUF, AND, NAND, NOR, XOR, OR, and XNOR.

Algorithm 1: Inference for Subgraph Classification
Input: G(V,E);Xf ; obfuscated components S, #hops r;
Output: Likelihood L for the obfuscated components S;

1 for s 2 S do
/* Subgraph extraction */

2 G
0
(V

0
, E

0
)  EXTRACT(G(V,E), s, r)

/* Functionality feature vector extraction
for the nodes in subgraph V

0
*/

3 X
0
f  Xf [V

0
]

/* Distance labeling for nodes in subgraph
for gate and interconnect obfuscation,
respectively */

4 X
0
d  DISTANCE-LABEL

⇣
G

0
, s

⌘

/* Final feature vector for the subgraph */

5 X
0
 CONCATENATE

⇣
X

0
d, X

0
f

⌘

/* Initializing the nodes with feature
vector */

6 for v 2 V
0 do

7 h
0
v  x

0
v

/* Passing the node information through L

GNN layers */
8 for l = 1 to L do
9 for v 2 V

0 do
10 N  NEIGHBORS(v)

11 h
l
v  MLPl

⇣
h
l�1
v +

P
u2N h

l�1
u

⌘

/* Passing the node information at each
layer through READOUT */

12 h
l
G

0  READOUT
⇣
h
l
v |v 2 G

0⌘

/* Concatenate all the outputs of GNN layers
*/

13 h
[0:L]

G
0  

h
h
0
G

0 , h
1
G

0 , ....., h
L
G

0

i

/* Final GNN likelihood output */

14 `s  DENSE LAYER
⇣
h
[0:L]

G
0

⌘

15 L.APPEND(`s)

16 return L

Algorithm 1 describes the pseudo-code of the subgraph
classification. As indicated, we propose a unified attack frame-
work for interconnect and gate obfuscation, but it is important
to note that devising such a framework entails additional
challenges, especially when tackling state-of-the-art obfus-
cation schemes. Hence, we devise and implement dedicated
techniques for the subgraph and feature extraction steps of the
framework. These steps are discussed in detail next.
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Spectral Embedding

Future Direction

Hub Labeling CFGNN [Preprint] | HubGT [Preprint]

Application: Recommendation Popularity

Pair-wise SimiIarity SIGMA [H Liu et al | ICDE’25]

Personalized PageRank GBP [Chen et al | NeurIPS’20] & SCARA [Liao et al | VLDB’22]



Node Similarity: Schema

Measures of 
Node-wise Similarity

PredictionNeural 
Network

o Mature graph algorithms
o Richer information

Graph Data



Personalized PageRank (PPR)
Node Similarity

• A ɑ-decay random walk:
• Stop with ɑ probability at each step

• If not stop, randomly jumps to one of its out-neighbors

ɑ 1-ɑ
stop jump to neighbor

s



Personalized PageRank (PPR)
Node Similarity

• Random walk interpretation of                   :
• probability that a random walk from      stops at

PPR(     ,     )ts

s t

ɑ 1-ɑ
stop jump to neighbort

s



Personalized PageRank (PPR)
Node Similarity

~ m

Single Direction Push

~ 𝑚

Bidirectional PushSource Node

Target Node

P Lofgren et al, "Personalized PageRank Estimation 
and Search: A Bidirectional Approach", WSDM’16. 

• Bidirectional push for faster node-wise computation

Computation:



PPR: GBP [NeurIPS’20] 

Node Similarity

Forward: Random Walk

• Bidirectional propagation
• Forward: Random Walk from ego nodes

• Backward: Reverse Push from feature 
vectors

• Decoupled propagation and network

• Reduced propagation complexity

Backward: Reverse Push
𝑂 𝐿 𝐿𝑚 log(𝐿𝑛) /𝜀

M Chen et al, "Scalable Graph Neural Networks Via Bidirectional Propagation", NeurIPS’20. 



PPR: SCARA [VLDB’22] 

Node Similarity

• Feature-oriented: start from each 
node attribute vector

• Pure forward scheme
• Insignificant push: control by threshold

• Significant push: compensate by 
random walk

• Reduced propagation complexity

𝑂 𝑚 log(𝑛) /𝜆

2 .7 9 3 9 7 0 0 9 4 1 .3 8 2 8 1 4 9 4 3 1 .1 7 9 1 3 6 1 8 9 1 .8 6 7 1 3 8 2 9 4 0 .7 1 0 2 2 1 1 5 1 0 .8 4 1 0 2 2 2 5 1 0 0 .6 0 1 9 0 8 0 .0 5 6 3 6 0 1 1 0 .4 0 5 3 5 1 8 2 1 0

0 2 .2 8 2 8 1 4 9 4 3 2 .0 7 9 1 3 6 1 8 9 2 .7 6 7 1 3 8 2 9 4 0 .7 1 0 2 2 1 1 5 1 0 .8 4 1 0 2 2 2 5 1 0 0 .6 0 1 9 0 8 0 .0 5 6 3 6 0 1 1 0 .4 0 5 3 5 1 8 2 1 0

2 .2 3 5 1 7 6 0 7 5

0 0 0 0 0 0 0 0 0 0 0

0 .2 4 1 9 7 7 7 9 5 0 .4 6 9 2 9 8 4 9 8 0 .4 7 6 8 2 6 5 9 4 0 .0 0 2 9 0 9 5 8 5 0 .4 0 .2 4 7 5 4 1 5 4 4 0 .4 0 .0 2 6 1 4 4 5 7 7 0 0 0 .2 0 4 5 8 1 9 1 3

0 .0 1 6 5 3 4 9 1 9 0 .4 3 2 7 9 4 9 3 1 0 .4 8 1 8 1 2 7 7 5 0 .0 4 9 9 4 3 8 1 7 0 .4 3 4 2 2 7 8 6 6 0 .3 9 4 8 0 5 0 2 5 0 .1 3 1 3 2 3 2 4 1 0 .0 2 1 6 0 4 9 5 6 0 .3 0 .1 1 6 8 4 2 2 5 5 0 .2 2 6 1 8 7 3 7 8

0 .2 0 .1 1 5 6 6 5 3 9 4 0 .1 0 1 0 2 0 2 7 0 .2 0 .1 4 2 1 6 4 9 6 6 0 .2 5 7 2 4 5 5 9 8 0 .1 1 6 5 6 1 9 6 3 0 .1 3 5 2 1 1 0 1 4 0 .4 8 8 4 6 1 0 .1 4 4 4 9 9 2 0 9 0 .1 0 7 7 1 9 2 4 7

0 .2 3 8 8 9 2 2 5 3 0 .4 5 5 6 2 2 7 5 7 0 .1 0 0 5 8 5 6 8 6 0 .4 2 4 2 4 9 0 9 8 0 .1 7 3 6 6 4 4 1 4 0 .4 2 0 7 9 3 3 2 9 0 .3 0 0 4 6 6 3 0 7 0 .0 6 8 4 1 7 7 3 8 0 .0 4 2 0 9 8 6 5 2 0 .0 0 5 4 4 6 0 8 9 0 .2 8 9 1 0 2 7 8 3

n

Reserve

Residue

<latexit sha1_base64="R9aq2ikr9BrgDUKPSrF5q3M+S2M=">AAACHXicbVC9TgJBGNxVVMQ/0MTG5iIxsSJ3FmpJsLGEKD8JXMje8h1s2Nu77O6p5MIj2GrpE/gW2hlbY+OzuBwUAk6yyWRmvmR2vIgzpW37G6+sZtbWN7Kbua3tnd29fGG/ocJYUqjTkIey5REFnAmoa6Y5tCIJJPA4NL3h1cRv3oFULBS3ehSBG5C+YD6jRBvpRnadbr5ol+wU1jJxZqRYPqz9sNfKW7VbwJlOL6RxAEJTTpRqO3ak3YRIzSiHca4TK4gIHZI+tA0VJADlJmnXsXVilJ7lh9I8oa1U/XuRkECpUeCZZED0QC16E/E/r82ZB6aBADcRcK8f0uDctRcsdNP+pZswEcUaBJ1W82Nu6dCaTGX1mASq+cgQQiUzv7PogEhCtRk0Z3ZzFldaJo2zknNecmpmwAqaIouO0DE6RQ66QGV0jaqojijqo0f0hJ7xC37HH/hzGl3Bs5sDNAf89Qsx36WD</latexit>A1

<latexit sha1_base64="0jjCZtQRkTo6MFKQIE3s0azAaT8=">AAACK3icbVDNTsJAGNwiKuIPoEcvDcQEY8RWE/VI9OIRE/lJoCHb5QM2bLfN7lZtGt7Cm1c9+jSeMF59D5fCQcBJNpnMzJfMjhswKpVlTYzUWnp9YzOzld3e2d3L5Qv7DemHgkCd+MwXLRdLYJRDXVHFoBUIwJ7LoOmObqd+8xGEpD5/UFEAjocHnPYpwUpL3XyubJ92MAuG+Fh07bOLbr5kVawE5iqx56RULXZOXibVqNYtGOlOzyehB1wRhqVs21agnBgLRQmDcbYTSggwGeEBtDXl2APpxEnzsXmklZ7Z94V+XJmJ+vcixp6UkefqpIfVUC57U/E/r82oC7oBByfm8KSek+DCtestdVP9ayemPAgVcDKr1g+ZqXxzOpzZowKIYpEmmAiqf2eSIRaYKD1vVu9mL6+0ShrnFfuyYt/rAW/QDBl0iIqojGx0haroDtVQHREUolf0ht6ND+PT+DK+Z9GUMb85QAswfn4BlRKpDQ==</latexit>

(1 � U)A1/3<latexit sha1_base64="pU3WfnJXh7mrfCX1Drj1mKTLa5A="></latexit>

ĉ1 + = UA1

<latexit sha1_base64="+jXGRjKZGPWjU8VHc/iU1q7b6XU=">AAACJnicbVDNSgMxGMxq1Vr/Wj16CS2CIpRdDyp4KXrxWMHWQneRbPq1DU2yS5LVlqVvIV716NN4E+nNRzH9OdjWgcAwMx9MJow508Z1R87KamZtfSO7mdva3tndyxf26zpKFIUajXikGiHRwJmEmmGGQyNWQETI4SHs3Yz9hydQmkXy3gxiCATpSNZmlBgr+erYD0XaH17h5OQxX3LL7gR4mXgzUqoU/dOXUWVQfSw4Gb8V0USANJQTrZueG5sgJcowymGY8xMNMaE90oGmpZII0EE6KT3ER1Zp4Xak7JMGT9S/FykRWg9EaJOCmK5e9Mbif16TsxBsAwlBKuHZ9CfBuetQLHQz7csgZTJODEg6rdZOODYRHm+GW0wBNXxgCaGK2d9h2iWKUGOXzdndvMWVlkn9rOydl707O+A1miKLDlERHSMPXaAKukVVVEMUxegVvaF358P5dL6c72l0xZndHKA5OD+/JvCodw==</latexit>

A (x;D)
<latexit sha1_base64="fEAFSx25YOTdDG9chQBL1tiMLfQ=">AAACMHicbVDNSgMxGMz6b/2rPzcvQREqQtn1oIKXohePClaF7lKy6dc2NMkuybdqXfoWPoBXPfo0ehKvPoVp68FWBwLDzHwwmTiVwqLvv3sTk1PTM7Nz84WFxaXlleLq2pVNMsOhyhOZmJuYWZBCQxUFSrhJDTAVS7iOO6d9//oWjBWJvsRuCpFiLS2agjN0Ur24EbYZ5mEqeqUwVvl975hmu/Xitl/2B6B/SfBDtitb4d7je6V7Xl/1psJGwjMFGrlk1tYCP8UoZwYFl9ArhJmFlPEOa0HNUc0U2Cgf1O/RHac0aDMx7mmkA/X3Rc6UtV0Vu6Ri2LbjXl/8z6tJEYNroCHKNdzh/SA4ch2rsW7YPIpyodMMQfNhtWYmKSa0vx5tCAMcZdcRxo1wv6O8zQzj6DYuuN2C8ZX+kqv9cnBQDi7cgCdkiDmySbZIiQTkkFTIGTknVcLJA3kiz+TFe/XevA/vcxid8H5u1skIvK9vt6msTA==</latexit>

ĉ (x;D)

<latexit sha1_base64="0jjCZtQRkTo6MFKQIE3s0azAaT8=">AAACK3icbVDNTsJAGNwiKuIPoEcvDcQEY8RWE/VI9OIRE/lJoCHb5QM2bLfN7lZtGt7Cm1c9+jSeMF59D5fCQcBJNpnMzJfMjhswKpVlTYzUWnp9YzOzld3e2d3L5Qv7DemHgkCd+MwXLRdLYJRDXVHFoBUIwJ7LoOmObqd+8xGEpD5/UFEAjocHnPYpwUpL3XyubJ92MAuG+Fh07bOLbr5kVawE5iqx56RULXZOXibVqNYtGOlOzyehB1wRhqVs21agnBgLRQmDcbYTSggwGeEBtDXl2APpxEnzsXmklZ7Z94V+XJmJ+vcixp6UkefqpIfVUC57U/E/r82oC7oBByfm8KSek+DCtestdVP9ayemPAgVcDKr1g+ZqXxzOpzZowKIYpEmmAiqf2eSIRaYKD1vVu9mL6+0ShrnFfuyYt/rAW/QDBl0iIqojGx0haroDtVQHREUolf0ht6ND+PT+DK+Z9GUMb85QAswfn4BlRKpDQ==</latexit>

(1 � U)A1/3

<latexit sha1_base64="0jjCZtQRkTo6MFKQIE3s0azAaT8=">AAACK3icbVDNTsJAGNwiKuIPoEcvDcQEY8RWE/VI9OIRE/lJoCHb5QM2bLfN7lZtGt7Cm1c9+jSeMF59D5fCQcBJNpnMzJfMjhswKpVlTYzUWnp9YzOzld3e2d3L5Qv7DemHgkCd+MwXLRdLYJRDXVHFoBUIwJ7LoOmObqd+8xGEpD5/UFEAjocHnPYpwUpL3XyubJ92MAuG+Fh07bOLbr5kVawE5iqx56RULXZOXibVqNYtGOlOzyehB1wRhqVs21agnBgLRQmDcbYTSggwGeEBtDXl2APpxEnzsXmklZ7Z94V+XJmJ+vcixp6UkefqpIfVUC57U/E/r82oC7oBByfm8KSek+DCtestdVP9ayemPAgVcDKr1g+ZqXxzOpzZowKIYpEmmAiqf2eSIRaYKD1vVu9mL6+0ShrnFfuyYt/rAW/QDBl0iIqojGx0haroDtVQHREUolf0ht6ND+PT+DK+Z9GUMb85QAswfn4BlRKpDQ==</latexit>

(1 � U)A1/3

2 .7 9 3 9 7 0 0 9 4 1 .3 8 2 8 1 4 9 4 3 1 .1 7 9 1 3 6 1 8 9 1 .8 6 7 1 3 8 2 9 4 0 .7 1 0 2 2 1 1 5 1 0 .8 4 1 0 2 2 2 5 1 0 0 .6 0 1 9 0 8 0 .0 5 6 3 6 0 1 1 0 .4 0 5 3 5 1 8 2 1 0

0 2 .2 8 2 8 1 4 9 4 3 2 .0 7 9 1 3 6 1 8 9 2 .7 6 7 1 3 8 2 9 4 0 .7 1 0 2 2 1 1 5 1 0 .8 4 1 0 2 2 2 5 1 0 0 .6 0 1 9 0 8 0 .0 5 6 3 6 0 1 1 0 .4 0 5 3 5 1 8 2 1 0

2 .2 3 5 1 7 6 0 7 5

0 .0 9 9 8 9 5 3 6 7 0 .1 5 5 3 5 5 9 2 0 .1 5 4 4 3 5 8 8 4 0 0 0 .3 5 5 4 4 6 8 8 3 0 .1 0 4 2 6 7 3 5 4 0 .4 7 3 3 9 7 6 3 1 0 .1 8 2 3 6 0 9 3 3 0 .2 1 8 8 8 3 2 1 0 .3 5 1 7 9 0 5 7 3

0 .2 5 3 6 9 7 0 7 1 0 .4 2 8 1 4 4 8 3 3 0 .0 5 9 8 2 4 8 3 3 0 .3 3 1 5 3 9 1 3 1 0 .3 9 9 4 3 9 3 4 0 .2 4 9 3 3 9 5 5 4 0 .4 0 .2 0 0 .3 7 7 5 8 7 7 7 2 0 .2 2 0 3 9 7 6 1 7

0 .2 0 .0 6 4 7 4 1 1 1 8 0 .0 4 2 6 5 5 5 8 3 0 .2 8 6 0 2 1 8 8 1 0 .0 3 9 2 3 9 9 4 6 0 .0 2 6 3 6 5 9 1 7 0 .1 5 6 6 8 5 6 4 6 0 .1 5 8 3 5 8 0 4 9 0 .1 2 2 5 2 1 8 1 1 0 .0 6 3 2 0 5 3 8 3 0 .4 0 9 9 4 2 3 4 4

0 .2 0 .2 6 3 0 5 2 3 9 1 0 .2 0 .2 0 .0 6 4 9 4 7 5 3 1 0 .1 1 9 3 9 1 3 8 9 0 .4 0 .0 3 1 7 2 7 0 5 5 0 .2 7 8 4 8 3 7 0 9 0 .2 7 9 9 6 7 5 8 3 0 .2 4 5 7 9 2 6 8 4

0 .0 1 0 2 9 9 4 8 5 0 .0 1 8 1 2 7 9 4 1 0 .3 1 1 2 2 8 3 4 7 0 .2 0 .3 9 5 8 7 9 8 3 8 0 .1 6 7 1 4 5 0 4 4 0 .2 4 9 7 7 7 9 4 3 0 .4 8 1 1 8 1 3 4 9 0 .4 8 5 9 6 4 0 0 6 0 .3 0 9 4 6 7 7 0 6 0 .1 2 0 2 8 7 8 4 5

Feature <latexit sha1_base64="kUC+ftP6a+0tDcXzuKP8eLlVqf4=">AAACIHicbVDNTgIxGOwqKq5/oEcvG4mJJ7LrQb0YiV48YiI/CWxIt3xApe1u2q5CNryDVz3qw+jNeDL6NJaFg4CTNJnMzJdMJ4gYVdp1v62l5czK6lp23d7Y3NreyeV3qyqMJYEKCVko6wFWwKiAiqaaQT2SgHnAoBb0r8Z+7R6koqG41cMIfI67gnYowdpI1WbAk8GolSu4RTeFs0i8KSlcvNnn0euXXW7lrUyzHZKYg9CEYaUanhtpP8FSU8JgZDdjBREmfdyFhqECc1B+ktYdOYdGaTudUJontJOqfy8SzJUa8sAkOdY9Ne+Nxf+8BqMBmAYC/ETAgx6kwZnrgM91050zP6EiijUIMqnWiZmjQ2e8ltOmEohmQ0MwkdT8ziE9LDHRZlPb7ObNr7RIqsdF76To3biF0iWaIIv20QE6Qh46RSV0jcqoggi6Q4/oCT1bL9a79WF9TqJL1vRmD83A+vkF0Uem2g==</latexit>x

v1

v2

v3

v4

v5

v6

v7

v8

v10

v11v9

2 .7 9 3 9 7 0 0 9 4 1 .3 8 2 8 1 4 9 4 3 1 .1 7 9 1 3 6 1 8 9 1 .8 6 7 1 3 8 2 9 4 0 .7 1 0 2 2 1 1 5 1 0 .8 4 1 0 2 2 2 5 1 0 0 .6 0 1 9 0 8 0 .0 5 6 3 6 0 1 1 0 .4 0 5 3 5 1 8 2 1 0

0 2 .2 8 2 8 1 4 9 4 3 2 .0 7 9 1 3 6 1 8 9 2 .7 6 7 1 3 8 2 9 4 0 .7 1 0 2 2 1 1 5 1 0 .8 4 1 0 2 2 2 5 1 0 0 .6 0 1 9 0 8 0 .0 5 6 3 6 0 1 1 0 .4 0 5 3 5 1 8 2 1 0

2 .2 3 5 1 7 6 0 7 5
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0 .2 5 3 6 9 7 0 7 1 0 .4 2 8 1 4 4 8 3 3 0 .0 5 9 8 2 4 8 3 3 0 .3 3 1 5 3 9 1 3 1 0 .3 9 9 4 3 9 3 4 0 .2 4 9 3 3 9 5 5 4 0 .4 0 .2 0 0 .3 7 7 5 8 7 7 7 2 0 .2 2 0 3 9 7 6 1 7
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0 .2 0 .2 6 3 0 5 2 3 9 1 0 .2 0 .2 0 .0 6 4 9 4 7 5 3 1 0 .1 1 9 3 9 1 3 8 9 0 .4 0 .0 3 1 7 2 7 0 5 5 0 .2 7 8 4 8 3 7 0 9 0 .2 7 9 9 6 7 5 8 3 0 .2 4 5 7 9 2 6 8 4
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1 .4 7 9 5 2 4 4 3 9 0 .8 5 8 6 5 2 5 7 6 0 .8 5 8 6 5 2 5 7 6 0 .6 6 0 5 0 1 9 8 2 0 .8 5 8 6 5 2 5 7 6 0 .8 5 8 6 5 2 5 7 6 0 .4 6 2 3 5 1 3 8 7 1 .9 8 1 5 0 5 9 4 5 0 .3 3 0 2 5 0 9 9 1 0 .3 3 0 2 5 0 9 9 1 1 .3 2 1 0 0 3 9 6 3
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0 .0 9 9 8 9 5 3 6 7 0 .1 5 5 3 5 5 9 2 0 .1 5 4 4 3 5 8 8 4 0 0 0 .3 5 5 4 4 6 8 8 3 0 .1 0 4 2 6 7 3 5 4 0 .4 7 3 3 9 7 6 3 1 0 .1 8 2 3 6 0 9 3 3 0 .2 1 8 8 8 3 2 1 0 .3 5 1 7 9 0 5 7 3

0 .2 5 3 6 9 7 0 7 1 0 .4 2 8 1 4 4 8 3 3 0 .0 5 9 8 2 4 8 3 3 0 .3 3 1 5 3 9 1 3 1 0 .3 9 9 4 3 9 3 4 0 .2 4 9 3 3 9 5 5 4 0 .4 0 .2 0 0 .3 7 7 5 8 7 7 7 2 0 .2 2 0 3 9 7 6 1 7

0 .2 0 .0 6 4 7 4 1 1 1 8 0 .0 4 2 6 5 5 5 8 3 0 .2 8 6 0 2 1 8 8 1 0 .0 3 9 2 3 9 9 4 6 0 .0 2 6 3 6 5 9 1 7 0 .1 5 6 6 8 5 6 4 6 0 .1 5 8 3 5 8 0 4 9 0 .1 2 2 5 2 1 8 1 1 0 .0 6 3 2 0 5 3 8 3 0 .4 0 9 9 4 2 3 4 4

0 .2 0 .2 6 3 0 5 2 3 9 1 0 .2 0 .2 0 .0 6 4 9 4 7 5 3 1 0 .1 1 9 3 9 1 3 8 9 0 .4 0 .0 3 1 7 2 7 0 5 5 0 .2 7 8 4 8 3 7 0 9 0 .2 7 9 9 6 7 5 8 3 0 .2 4 5 7 9 2 6 8 4

0 .0 1 0 2 9 9 4 8 5 0 .0 1 8 1 2 7 9 4 1 0 .3 1 1 2 2 8 3 4 7 0 .2 0 .3 9 5 8 7 9 8 3 8 0 .1 6 7 1 4 5 0 4 4 0 .2 4 9 7 7 7 9 4 3 0 .4 8 1 1 8 1 3 4 9 0 .4 8 5 9 6 4 0 0 6 0 .3 0 9 4 6 7 7 0 6 0 .1 2 0 2 8 7 8 4 5

<latexit sha1_base64="+jXGRjKZGPWjU8VHc/iU1q7b6XU=">AAACJnicbVDNSgMxGMxq1Vr/Wj16CS2CIpRdDyp4KXrxWMHWQneRbPq1DU2yS5LVlqVvIV716NN4E+nNRzH9OdjWgcAwMx9MJow508Z1R87KamZtfSO7mdva3tndyxf26zpKFIUajXikGiHRwJmEmmGGQyNWQETI4SHs3Yz9hydQmkXy3gxiCATpSNZmlBgr+erYD0XaH17h5OQxX3LL7gR4mXgzUqoU/dOXUWVQfSw4Gb8V0USANJQTrZueG5sgJcowymGY8xMNMaE90oGmpZII0EE6KT3ER1Zp4Xak7JMGT9S/FykRWg9EaJOCmK5e9Mbif16TsxBsAwlBKuHZ9CfBuetQLHQz7csgZTJODEg6rdZOODYRHm+GW0wBNXxgCaGK2d9h2iWKUGOXzdndvMWVlkn9rOydl707O+A1miKLDlERHSMPXaAKukVVVEMUxegVvaF358P5dL6c72l0xZndHKA5OD+/JvCodw==</latexit>

A (x;D)
<latexit sha1_base64="fEAFSx25YOTdDG9chQBL1tiMLfQ=">AAACMHicbVDNSgMxGMz6b/2rPzcvQREqQtn1oIKXohePClaF7lKy6dc2NMkuybdqXfoWPoBXPfo0ehKvPoVp68FWBwLDzHwwmTiVwqLvv3sTk1PTM7Nz84WFxaXlleLq2pVNMsOhyhOZmJuYWZBCQxUFSrhJDTAVS7iOO6d9//oWjBWJvsRuCpFiLS2agjN0Ur24EbYZ5mEqeqUwVvl975hmu/Xitl/2B6B/SfBDtitb4d7je6V7Xl/1psJGwjMFGrlk1tYCP8UoZwYFl9ArhJmFlPEOa0HNUc0U2Cgf1O/RHac0aDMx7mmkA/X3Rc6UtV0Vu6Ri2LbjXl/8z6tJEYNroCHKNdzh/SA4ch2rsW7YPIpyodMMQfNhtWYmKSa0vx5tCAMcZdcRxo1wv6O8zQzj6DYuuN2C8ZX+kqv9cnBQDi7cgCdkiDmySbZIiQTkkFTIGTknVcLJA3kiz+TFe/XevA/vcxid8H5u1skIvK9vt6msTA==</latexit>

ĉ (x;D)
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N Liao et al, "SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization", VLDB’22. 
N Liao et al, "Scalable Decoupling Graph Neural Networks with Feature-Oriented Optimization", VLDBJ’23. 



PPR: SCARA [VLDB’22] 

Node Similarity

• Conventional PPR: each node 
possesses a scalar value

• PPR in GNN: each node possesses a 
vector (feature vector)

• There are overlaps among feature 
dimensions 
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N Liao et al, "SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization", VLDB’22. 
N Liao et al, "Scalable Decoupling Graph Neural Networks with Feature-Oriented Optimization", VLDBJ’23. 

We can reuse PPR calculations 
among feature dimensions!



Pair-wise Similarity
Node Similarity

• SimRank: a measure of node similarity based on neighborhood topology

• Global Similarity: distant node pair sharing the similar topology

Global Similarity
Neighborhood

Neighborhood



Pair-wise Similarity: SIGMA [ICDE’25] 

Node Similarity

• Global similarity: address heterophily by graph metric 
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H Liu et al, "SIGMA: An Efficient Heterophilous Graph 
Neural Network with Fast Global Aggregation", ICDE’25. 
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Pair-wise Similarity: SIGMA [ICDE’25] 

Node Similarity

• Combining attribute and topological
representations:

• Combining local and global
representations:

H Liu et al, "SIGMA: An Efficient Heterophilous Graph 
Neural Network with Fast Global Aggregation", ICDE’25. 



Hub Labeling
Node Similarity

• Hub Labeling: adding new links to selected hub nodes, so that distant 
node pairs can be easily reached through hubs

• Shortest Path: reachability and distance can be computed through labels

Source Node Target NodeHub Nodes

Indexing Querying

Label Connections Shortest Path



Hub Labeling: CFGNN [Preprint] 

Node Similarity

• Hub labeling: identify hub nodes 
as the center of node clusters

• Distinctive message-passing:
• Fringe nodes -> Hub nodes: 

collect

• Hub nodes -> Fringe nodes: 
distribute

Under review as a conference paper at ICLR 2024

The transformer-based methods only require one step since the self-attention affinity matrix AV

encompasses all pairs of nodes.
Z = ⇢(AV XW ) (4)

Figure 6: Cores are considered transit hubs of the message passing. Each of these cores first collects
the messages from fringes and updates its representation, and then distributes its updated represen-
tation to its fringes.

In contrast to these two classic methods, the core-fringe structure allows us to achieve Proposition 1
with only a two-stage model as illustrated in Figure 6. The matrix multiplication format of the
process can be presented as follows.

Z = ⇢(

C�Fz }| {
AT

L
(ALXW1| {z }

F�C

)W2) (5)

where AL indicates the affinity matrix of hub labels. For clarity, the mathematical equations of the
two-stage process are shown in message passing fashion as follows.
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Collect and Distribute. Our Core-Fringe based GNN (CFGNN) involves two stages. The first
stage collects messages from fringes to learn the core embeddings, i.e., F � C. The second stage
distributes the messages from cores back to all fringes, i.e., C � F . As depicted in Equation 5, these
two stages are a pair of mirroring processes. The first stage collects information from fringes using
AL, while the second stage distributes the aggregated information to the targeted nodes based on the
transposed matrix AT

L
. An algorithm outlining the framework is provided in Appendix A.4.

In the first stage, messages are collected in a message passing fashion. Cores collect and aggregate
messages from all their fringes to update their embeddings (lower part of Figure 6). This is achieved
by computing a message vector for each fringe node via the message function and then aggregating
them using a differentiable and permutation-invariant function Equation 6).

In the second stage, the representation of the cores contains all the information from their fringes
(upper part of Figure 6). It is worth noting that the union of the fringe set is equivalent to the target
node set due to the 2-hop cover property (Property 1). In the subsequent stage, a mirror process is
used to update the representation of the fringes, which distributes the messages from the cores back
to the fringes. Each fringe will receive messages from its core set and update its representation,
similar to how the previous stage updated the cores Equation 6).

3.4 THEORETICAL ANALYSIS AND COMPUTATIONAL COMPLEXITY OF CFGNN

Lemma 1. HL-based core-fringe fulfills Proposition 1.

CFGNN, which integrates hub labeling into the field of graph learning, provides a powerful method-
ology for achieving comprehensive information coverage. This approach effectively captures long-
range dependencies while ensuring efficiency. For a detailed proof, please refer to Appendix A.2.

7

P Ip et al, "Bridging Indexing Structure and Graph Learning: Expressive 
and Scalable Graph Neural Network via Core-Fringe", 2023. 



Hub Labeling: HubGT [Preprint] 

Node Similarity

• Hub Labeling: compute node-pair 
Shortest Path Distance (SPD)

• Positional Encoding: emphasize 
important pairs in Graph Transformer

• Complexity: 
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Qi,Ki,Vi, i = 1, · · · , NH , and then the output H̃ across all heads is calculated as:75

H̃i = softmax

(
QiK

→
i→

FK
+ P

)
Vi, H̃ = (H̃1↑ · · · ↑H̃NH

)WO, (2)

where ·↑· denotes the matrix concatenation operation. The projection dimension is usually set as76

FK = FV = F/NH . Beside the representation H , positional encoding (PE) P in Eq. (2) can also77

incorporate graph topology into the GT attention module by encoding pair-wise information. Typical78

encoding approaches include graph proximity [2, 13, 19], Laplacian eigenvectors [20, 21, 4], and79

shortest path distance [18, 22, 23].80

Scalable GT and Training Schemes. The majority of vanilla GTs [20, 2, 3] are typically proposed81

for graph-level learning tasks on small graphs with full-batch training (FB). This is relevant to their82

quadratic complexity as revealed by Table 1, that the critical scalability bottleneck lies in Eq. (2) by83

representing n nodes with O(n2
F ) time and memory overhead.84

To mitigate the quadratic complexity and foster scalable learning, scalable GTs employ mini-batch85

training, which replaces the full representation H with batches containing nb nodes and reduces86

memory complexity to O(n2
bF ). Kernal-based GTs [6, 7, 8, 12] generate batches by neighborhood87

sampling (NS) and utilize graph kernels, i.e., functions modeling node-pair relations, for attention88

computation to exploit edge connections. Typically, they necessitate iterative processing of graph data89

with O(LmF ) complexity throughout learning. When the graph scale is large, this term becomes90

dominant since the edge size m is significantly larger than the node size n. Hence, we argue that such91

a design is not sufficiently scalable.92

Alternatively, hierarchical GTs exploit the power of GTs to learn node relations by embedding node-93

level identity through the input data X . Its core design is crafting an effective embedding scheme94

to comply with GT expressivity. Since the graph topology is embedded in an permutation-invariant95

manner, mini-batching can be performed through random sampling (RS). The model can enjoy96

better scalability if the graph processing is fully independent of GT attention. Ideally, hierarchical97

GTs can process graph topology in O(m) complexity in precomputation and employ RS during98

training for better scalability. Nonetheless, we note that existing models, except for NAGphormer and99

PolyFormer, still involve graph-level operations during training as in Table 1, which hinders GPU100

utilization and causes additional overhead. A thorough analysis of the related models can be found in101

Appendix B.102

3 Motivating Study103

Motivation 1: Graph hierarchy beyond adjacency. The expressiveness of GTs mainly stems104

from the full-graph attention formulated in Eq. (2), which captures critical node pairs in the graph105

topology to learn node representations [2, 6]. However, since the mini-batch scheme replaces it106

with in-batch attention, its capability is potentially hindered. To compensate the information loss,107

scalable GTs usually invoke more powerful embedding and encoding techniques, enhancing the108

global graph view for more candidate nodes by expanding the receptive field. In canonical mini-batch109

GT models [2, 6, 7, 9], the graph information is typically derived from the graph adjacency A, which110

symbolizes neighborhood information E . For both kernel-based and hierarchical GT variants, their111

expressiveness in distinguishing different graph structures is characterized by the substructure used112

in attention tokens [23].113

However, recent advances in message-passing GNNs reveal that, the adjacency alone is insufficient114

for retrieving topological information in graph learning [24]. In complicated scenarios such as115

heterophilous graphs, the local graph topology may be ambiguous or even misleading [25, 26, 27].116

To illustrate, Figure 1 shows the distribution of node neighbors considering their classification labels117

depicted by the homophily score [28]. A lower homophily score implies high heterophily, where less118

neighbors share the same label with the ego node. On graphs such as CHAMELEON and SQUIRREL, a119

large portion of nodes exhibits zero homophily, indicating that substructures depending on graph120

edges E barely include neighbors with the same label for GT to attend.121

We are thence motivated to improve GT by augmenting the existing graph connections E to an122

extended edge set Ê containing additional node interactions beyond the neighborhood. As shown123

in Figure 1, establishing more edges enhances nodes of lower scores with more homophilous124

connections, effectively addressing the zero-homophily issue. Therefore, encompassing both local125

3

N Liao et al, "HubGT: Fast Graph Transformer with 
Decoupled Hierarchy Labeling", arXiv:2412.04738, 2024. 

(full graph)

(within subgraph)𝑂 𝑠!

𝑂 𝑛!



Hub Labeling: HubGT [Preprint] 

Node Similarity

N Liao et al, "HubGT: Fast Graph Transformer with 
Decoupled Hierarchy Labeling", arXiv:2412.04738, 2024. 

Conventional SPD Subgraph SPD

Ego Nodes
Accessed Edges

Subgraph

• Subgraph SPD: fast querying any node pairs within subgraph of a node

Query Time

Index Size 𝑂 𝑛𝑠! 𝑂 𝑛𝑠!

𝑂 𝑠 𝑂 1



Node Similarity: Takeaways

SIGMA [ICDE’25]

o Global similarity between 
distant nodes

o Fast push computation

PPR SimRank Hub Labeling

GBP [NeurIPS’20]  
SCARA [VLDB’22]

o Similar to graph convolution 
with faster computation

o Scalar       feature vector

CFGNN [Preprint]
HubGT [Preprint]

o Rewiring with core hub nodes
o Applicable to MPNN & GT



Node Similarity: Applications

• Graph: user-item interaction 

• Task: unbiased recommendation

• Global popularity: biased to top 
popular items

• Personal popularity: based on 
user similarity

Debiasing Recommendation

W Ning et al, "Debiasing Recommendation with Personal Popularity", WWW’24. 

Global
User-Item interaction

Personal Group
User-User Similarity



Spectral Embedding
Advances in Designing Scalable GNNs



Graph Simplification

20 min
11:25 ‒ 11:45

Outline

Spectral Embedding
Ningyi Liao

Node-wise Similarity

Application: Image Filtering

Future Direction

Adaptive Selection

Channel Combination LD2 [Liao et al | NeurIPS’23]

UniFilter & AdaptKry [Hunag et al | ICML & WWW’24]

TER [Wang et al | KDD’23] & S3GCL [Wan et al | ICML’24]



Spectral Embedding: Schema

Graph Data

Low Freq.

Mid Freq.

High Freq.

Channels

Spectral 
Analysis①

Spectral Analysis

o Comprehensive graph information
o Explainable & controllable
o Separated graph computation



Spectral Embedding: Schema

Graph Data
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Mid Freq.
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Channel Combination
Spectral Embedding

Spectral 
Embeddings

Neural 
Network

Channel
Combination

③How to select & combine 
useful channels?



Channel Combination: LD2 [NeurIPS’23] 

Spectral Embedding

N Liao et al, " LD2: Scalable Heterophilous Graph Neural 
Network with Decoupled Embedding", NeurIPS’23. 

• Heterophily: 1-hop message passing fails
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class Bclass AAggregated representation 
loses class information



Channel Combination: LD2 [NeurIPS’23] 

Spectral Embedding

N Liao et al, " LD2: Scalable Heterophilous Graph Neural 
Network with Decoupled Embedding", NeurIPS’23. 

• Heterophily: specifically focus 2-hop connections

Center Project Course Student StaÆ Faculty

Local Aggregation

Global Aggregation

Same Label: 10%

Same Label: 40%
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Channel Combination: LD2 [NeurIPS’23] 

Spectral Embedding

N Liao et al, " LD2: Scalable Heterophilous Graph Neural 
Network with Decoupled Embedding", NeurIPS’23. 
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Channel Combination: LD2 [NeurIPS’23] 

Spectral Embedding

N Liao et al, " LD2: Scalable Heterophilous Graph Neural 
Network with Decoupled Embedding", NeurIPS’23. 
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Channel Combination: S3GCL [ICML’24] 

Spectral Embedding

G Wan et al, " S3GCL: Spectral, Swift, Spatial 
Graph Contrastive Learning", ICML’24. 

• Contrastive learning: difference between low and high frequency signalsS3GCL: Spectral, Swift, Spatial Graph Contrastive Learning

Figure 3. Architecture illustration of S3GCL: Spectral, Swift, Spatial Graph Contrastive Learning. We show the training process (left) and
inference process (right) of S3GCL. Best viewed in color. Zoom in for details.

MLP, which is impractical in unsupervised scenarios.

To bridge this gap, we introduce an MLP encoder throughout
the entire GCL training process, enabling its direct deploy-
ment for efficient inference. Initially, we input the original
node feature matrix X into an L-layer MLP encoder Fω,
yielding representations Zf = Fω(X). Furthermore, the
MLP can be regarded as a full-pass filter, focusing solely
on feature transformation (Luan et al., 2022). Consequently,
this allows us to establish an optimization objective between
the full-pass and biased-pass filtered representations. Draw-
ing inspiration from the Info-NCE loss (Chen et al., 2020),
we formulate our Cross-Pass objective as:

Lcp =
→1
2|V|

∑

vi→V

(
log

s
(
zfp , z

l
p

)

∑
p ↑=q s

(
zfp , zlq

)

+ log
s
(
zfp , z

h
p

)

∑
p ↑=q s

(
zfp , zhq

)
)
.

(9)

Here the s(zfp , z
h
p ) = exp(ω(zfp , z

h
p )/ε) , ω is the cosine

similarity defined as: ω(zfp , zhp ) = zfp · zhp /(||z
f
p ||→ ||zhp ||).

The parameter ε denotes the contrast temperature. This
method offers guidance for node representation learning
by encouraging the model to produce semantically consis-
tent representations from two distinct graph views. More-
over, from a spectral perspective, this cross-pass process
ensures that the MLP encoder captures more invariant infor-
mation from the task-relevant properties of graph spectral
signals. The MLP optimization with different graph fre-
quency ranges also improves the generalizability of graphs.

Upon optimizing the cross-pass GCL objective, we obtain a
refined MLP encoder capable of generating high-level and
expressive node representations. However, MLPs inherently
lack the ability to capture graph structural properties and
context. Therefore in our initial studies, we observed that
representations learned by MLPs tend to deteriorate and

become suboptimal. Thus, enhancing the graph context
awareness of MLPs in these scenarios is imperative.

3.3. Spatial: Neighboring Positive Pairs

To address the issue of the MLP encoder limited aware-
ness of graph context, we introduce our concept of positive
pairs in the spatial domain. Prior research in spatial GNNs
has underscored the significance of the spatial domain in
graph learning (Wang et al., 2021; 2022), highlighting its
role in enhancing model adaptability to graph structure and
effectively managing long-range dependencies and hetero-
geneity. In our study, knowledge of the spatial domain
provides contextual insights that enable the MLP encoder
to more effectively comprehend the underlying structure
and semantics of the graph. Because the low-pass filter em-
phasizes neighborhood similarity in the spatial domain, we
initially identify structurally neighboring nodes as positive
pairs and separate the Cross-Pass objective as delineated in
Equation (9) into the Full-Low part, formulated as follows:

Lfl = → 1
2|V|

∑

vi→V

1
|N ↓

i |
∑

vp→N →
i

log
s
(
zfi , z

l
p

)

∑
vq→V\vi s

(
zfi , z

l
q

) .

(10)
N

→
i denotes the positive sample set of local neighbors for

node vi in node set V . It is important to note that treating
structurally neighboring nodes as positive pairs does not
necessarily lead to identical representations. As suggested
in (Altenburger & Ugander, 2018; Xiao et al., 2023), the
phenomenon known as Monophily has been observed in
both homophilic and heterophilic graphs. It implies that the
attributes of a node’s friends are likely to resemble those
of the node’s other friends, indicating two-hop similarities.
For instance, nodes vi and vk share a common neighbor vj .
The representations zfi and zfk are derived from the MLP, re-
spectively. Equation (10) encourage these representations to

5



Channel Combination: TER [KDD’23] 

Spectral Embedding

H Wang et al, " Efficient and Effective Edge-wise 
Graph Representation Learning", KDD’23. 

• Representation based on edge-wise proximity:

Proximity Edge Transition
m×mDense

• Eigen-decomposition:

E!icient and E!ective Edge-wise Graph Representation Learning KDD ’23, August 6–10, 2023, Long Beach, CA, USA

concept of collective homophily to ensure the embeddings of nodes
in a clique are close in the line graph. JONNEE [34] utilizes au-
toencoders with structural feature engineering and regularization
techniques to obtain edge embeddings. These methods, however,
tend to incur signi!cant computational overhead as the number of
edges in the processed graph can be quadratic to the number of
edges in the original graph.

2.2 Edge-wise Graph Representation Learning
Edge-wise GRL refers to the process of generating embeddings for
edges directly, without !rst converting edges into nodes, as in node-
wise GRL. [2] devises probabilistic, min-hash-based algorithms to
e"ciently support edge classi!cation in large-scale networks. How-
ever, they do not utilize edge attributes to consider edge attribute
a"nity. Some works utilize auto-encoders to capture graph struc-
tural and attribute similarities. AttrE2vec [5] generates random
walks starting from a node, and uses aggregation functions such as
average, exponential and GRU [4] functions to aggregate node/edge
features in the random walks and obtain node/edge representations.
Then, it uses auto-encoders and self-attention networks with fea-
ture reconstruction loss and graph structural loss to build edge
embeddings in an unsupervised manner. However, this approach
requires generating multiple random walks for each node, leading
to high computational overheads when building edge representa-
tions for large graphs. Edge2vec [51] uses deep auto-encoders and
skip-gram model to generate edge embeddings that preserve both
the local and global structure information of edges. Instead of using
random walks to sample nodes/edges, it uses the neighborhood
nodes to build positive and negative edge pairs. However, it also
su#ers from high time complexity for large graphs due to the usage
of deep auto-encoders. Other line of work aims to update edge
embeddings along with node embeddings while training GNNs.
For example, EGNN [26] crafts two-dimensional edge feature vec-
tors using node labels, which can be updated during the training
process of GNNs. EGAT [14] !rst constructs a three-dimensional
edge feature tensor and then applies non-linear transformations to
convert it into node embeddings. However, in these works, edge
features are used as auxiliary features to enhance node embeddings,
and the experiments in these works still focus on non-edge-related
tasks such as node classi!cation or graph classi!cation.

3 PROBLEM FORMULATION
3.1 Notations and Terminology
In this paper, matrices and vectors are represented in bold uppercase
and lowercase letters, e.g.,M and x, respectively. The 𝐿-th row (resp.
column) vector of M is denoted by M[𝐿] (resp. M[:, 𝐿]), and the
element at the 𝐿-th row and 𝑀-th column ofM is denoted byM[𝐿, 𝑀].
Given an index set S, the matrix block of M containing the row
(resp. column) vectors of the indices in S is denoted byM[S] (resp.
M[:,S]).

Let G = (V, E,A,X) denote an edge-attributed multigraph1,
where V is a set of nodes with cardinality |V| = 𝑁, E is a multiset
of edges with cardinality |E | = 𝑂, A is a set of attributes with
cardinality |A| = 𝑃 , and X → R𝐿↑𝑀 signi!es the attribute matrix of
1Note that the general edge-attributed graph can be regarded as a special case of the
edge-attributed multigraph where each pair of nodes is connected by only one edge.

edges. Each edge 𝑄 → E is associated with a pair of nodes (𝑅𝑁 , 𝑅 𝑂 ) and
an attribute vector of length-𝑃 , denoted as X[𝑄]. We use E → R𝑃↑𝐿

to represent the incidence matrix of G. For each edge 𝑄 → E and
its corresponding node pair (𝑅𝑁 , 𝑅 𝑂 ), we have E[𝑅𝑁 , 𝑄] = E[𝑅 𝑂 , 𝑄] = 1
and E[𝑅𝑄 , 𝑄] = 0 ↓𝑅𝑄 → V \ {𝑅𝑁 , 𝑅 𝑂 }.

Further, we denote by F → R𝐿↑𝑃 and B → R𝑃↑𝐿 the row-
normalized versions of E↔ and E, respectively. In particular, for
each edge 𝑄 → E and its associated node pair (𝑅𝑁 , 𝑅 𝑂 ), we have
F[𝑄, 𝑅𝑁 ] = F[𝑄, 𝑅 𝑂 ] = 0.5. For each node 𝑅 , B[𝑅, 𝑄𝑁 ] = 1

|E𝐿 | ↓𝑄𝑁 → E𝑅 ,
where E𝑅 is the set of edges incident to 𝑅 .

3.2 Edge-wise High-Order Proximity
By the de!nition of matrices F and B, we can interpret F[𝑄𝑁 , 𝑅] (resp.
B[𝑅, 𝑄 𝑂 ]) as the probability that an edge 𝑄𝑁 (resp. a node 𝑅) would
navigate to a node 𝑅 (resp. an edge 𝑄 𝑂 ) using a one-hop random
walk. Based thereon, we de!ne the following hidden transition
matrix P → R𝐿↑𝐿 for edges:

P = F · B, (1)

where P[𝑄𝑁 , 𝑄 𝑂 ] =
∑

𝑅→V F[𝑄𝑁 , 𝑅] · B[𝑅, 𝑄 𝑂 ], signifying the probabil-
ity of a random walk from edge 𝑄𝑁 transitioning to another edge 𝑄 𝑂
through any node 𝑅 → V . In the same vein, P𝑆 [𝑄𝑁 , 𝑄 𝑂 ] describes how
likely a length-𝑆 random walk from 𝑄𝑁 visits 𝑄 𝑂 in the end. Such ran-
dom walk probabilities can re$ect the multi-hop (a.k.a. high-order)
proximity of edge 𝑄 𝑂 from the perspective of edge 𝑄𝑁 . Akin to the
high-order proximity [59, 60, 71] de!ned in NRL, the high-order
proximity (HOP) matrix for edges can be formulated as follows:

𝛚 =
∑↗
𝑆=0𝑇 (𝑆) · P𝑆 , (2)

where 𝑇 (𝑆) represents an importance weight assigned to length-
𝑆 random walks and

∑↗
𝑆=0𝑇 (𝑆) = 1. Basically, 𝛚 quanti!es the

high-order topological proximity between every two edges using
di#erent hops of random walks. Particularly, when 𝑇 (𝑆) follows
the geometric distribution, i.e., 𝑇 (𝑆) = 𝑈 (1 ↘ 𝑈)𝑆 (resp. Poisson
distribution, i.e.,𝑇 (𝑆) = 𝑇↘𝑀𝑈𝑁

𝑆 ! ), the HOP in Eq. (2) is essentially the
well-know proximity measure Personalized PageRank (PPR) [20, 22]
(resp. heat kernel PageRank (HKPR) [10]) between edges.

L!""# 3.1. Both P and 𝛚 are doubly stochastic matrices.

P$%%&. All missing proofs appear in Section A. ↭

Unlike classic node-wise HOP, Lemma 3.1 presents a unique prop-
erty of our edge-wise HOP 𝛚, which implies that 𝛚 is symmetric
and stochastic, that is, 𝛚[𝑄𝑁 , 𝑄 𝑂 ] = 𝛚[𝑄 𝑂 , 𝑄𝑁 ] and

∑
𝑇 𝑂 →E 𝛚[𝑄𝑁 , 𝑄 𝑂 ] =

1. These properties enable us to devise an e"cient solution to ac-
curately encode high-order graph structures into low-dimensional
representations, as elaborated in the sequel.

3.3 Objective Functions
Next, we de!ne our objective functions for edge-wise GRL based
on the notion of edge-wise HOP de!ned previously. In brief, we
generate two edge representations for each edge: a topological
edge representation and an attributed edge representation. The
former solely encodes the structural information surrounding each
edge into a low-dimensional feature vector, and the latter augments
the attribute vector of each edge by aggregating features from its
neighborhood.

2328

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Hewen Wang, Renchi Yang, Keke Huang, and Xiaokui Xiao

Topological Edge Representation. As pinpointed by [41, 59],
classic unsupervised GRL solutions [16, 39, 48, 74] (e.g., DeepWalk
and node2vec) essentially factorize a matrix capturing the high-
order proximities between nodes in the graph. A series of subse-
quent works [37, 40, 59, 61, 66, 70, 72] have demonstrated the high
result utility of factorizing node-wise HOP (e.g., PPR, HKPR and
Katz index) matrices. Following this paradigm, we formulate the
topological edge representation learning as the following objective:

∑
𝐿𝐿 →𝑀

∑
𝐿 𝑀 →𝑀

(
𝛚[𝐿𝑁 , 𝐿 𝑂 ] ↑ Z[𝐿𝑁 ] · Z[𝐿 𝑂 ]

)2, (3)

where 𝛚 is the edge-wise HOP de!ned in Section 3.2 and Z[𝐿𝑁 ]
signi!es the topological edge representation of edge 𝐿𝑁 . Intuitively,
the objective function is to ensure that the high-order proximity
between edges 𝐿𝑁 , 𝐿 𝑂 can be approximated using the dot product of
their respective representations, i.e., Z[𝐿𝑁 ] · Z[𝐿 𝑂 ], which can be
rewritten as a low-rank approximation problem:

min
Z→R𝑁↓𝑂

↔𝛚 ↑ ZZ↗↔2𝑃 . (4)

Attributed Edge Representation. Aside from structural features
of the graph, edge attributes are another key factor that can lead to
improved accuracy in downstream tasks. Nowadays, GNNs have
become canonical models for exploiting attribute information in
node-wise prediction tasks. As revealed by a number of decoupled
GNN models [7, 9, 12, 52, 56, 65], the key recipe of GNNs is the
feature aggregation operation. To be more speci!c, a representation
matrix X can be precomputed by multiplying the high-order prox-
imity matrix 𝛚 with the raw attribute matrix X before feeding it
to the task-speci!c neural networks. Likewise, we can obtain such
attributed edge representations via the following equation:

X = 𝛚X, (5)

where for any node 𝐿 → 𝑀 and any attribute 𝑁 → 𝑂

X[𝐿𝑁 ,𝑁 𝑂 ] =
∑
𝐿𝑃 →𝑀 𝛚[𝐿𝑁 , 𝐿𝑄 ] · X[𝐿𝑄 ,𝑁 𝑂 ], (6)

meaning that the representation X[𝐿𝑁 ,𝑁 𝑂 ] of edge 𝐿𝑁 at attribute
𝑁 𝑂 aggregates edge 𝐿𝑄 ’s attribute value X[𝐿𝑄 ,𝑁 𝑂 ] weighted by their
HOP 𝛚[𝐿𝑁 , 𝐿𝑄 ]. Intuitively, the more proximal the two edges are, the
more similar their attributes are.

For graphs without edge attributes, we can utilize the topologi-
cal edge representations Z. As for edge-attributed graphs, distinct
from existing methods that overlook the topological features of
G and only account for the attributed edge representations, we
augment X with Z by concatenating them as the edge feature repre-
sentations, which leads to impressive performance enhancements
as validated by our experiments in Section 6. In Sections 4 and 5,
we present two e"cient algorithms for learning topological edge
representations and attributed edge representations by optimizing
the above-mentioned objectives, respectively.

4 THE TER ALGORITHM
Notwithstanding substantial well-established matrix factorization
and dimensionality reduction techniques, the problem in Eq. (4) re-
mains tenaciously challenging to address due to the immense costs
incurred by the computation and materialization of HOP matrix
𝛚. The state-of-the-art solution [61] to node-wise GRL mitigates

this issue by !rst reducing the sparse transition matrix into low-
dimensional matrices and incorporating high-order information
with a number of matrix multiplications. However, our edge-wise
transition matrix P de!ned in Eq. (1) is highly dense (with up to
𝑃 (𝑄2) entries in the worst case), rendering it impractical to adopt
the technique in [61]. Additionally, to our knowledge, all prior
works for node-wise GRL actually preserve the truncated version
of Eq. 2 (relying on specifying a maximum number of random walk
hops), failing to fully preserve the high-order proximity, and hence,
leading to sub-par result utilities. To this end, this section presents
TER, which obtains topological representations for edges by opti-
mizing the objective in Eq. (4) without explicitly constructing the
HOP matrix 𝛚. The high-level idea behind TER is delineated in Sec-
tion 4.1, followed by a detailed description and analysis in Section
4.2.

4.1 Basic Idea
Recall that theHOPmatrix𝛚 in Eq. (2) is a weighted sum of di#erent
orders of matrix powers of P. Intuitively, if we can represent P as
U𝛆U↗, where 𝛆 is a diagonal matrix and U is orthonormal (i.e.,
U↗U = I), we can obtain

𝛚 = U ·
(∑↘

𝑅=0𝑅 (𝑆)𝛆𝑅
)
· U↗, (7)

which implies that we can utilize Z = U
√∑↘

𝑅=0𝑅 (𝑆)𝛆𝑅 as the topo-
logical edge representations. In such a manner, we can avoid the
construction of matrix 𝛚 and reduce the problem in Eq. (4) to the
factorization of P. Through rigorous theoretical analysis and the
unique property of P in Lemma 3.1, Theorem 4.1 o#ers a viable
solution to implement the above-said idea, allowing us to capture
high-order proximity between nodes without performing numerous
iterations of expensive matrix multiplications.

T!"#$"% 4.1. Let U be the exact singular vectors of P and the
diagonal entries in the diagonal matrix 𝛝 be the singular values. Then,
we have

𝛚𝑆 =
∑↘
𝑅=0 𝑇 (1 ↑ 𝑇)𝑅P𝑅 = U ·

(
I↑(1↑𝑆)𝛝

𝑆

)↑1
· U↗, (8)

when weight function𝑅 (𝑆) = 𝑇 (𝑁 ↑ 𝑇)𝑅 follows a geometric distribu-
tion, and

𝛚𝑇 =
∑↘
𝑅=0

𝐿↑𝑄𝑇𝑅
𝑅 ! · P𝑅 = U · 𝐿𝑄𝛝

𝐿𝑄
· U↗, (9)

when weight function𝑅 (𝑆) = 𝐿↑𝑄𝑇𝑅
𝑅 ! follows a Poisson distribution.

Further, based on Theorem 4.1, the problem in Eq. (4) can the
transformed to compute the top-𝑈 singular values 𝛝 and the corre-
sponding singular vectors U of P. Notice that the materialization
of P is still highly time- and space-consuming (up to 𝑃 (𝑄2) in
the worst case). To this end, we propose TER, which leverages and
tweaks randomized SVD [17] for the e"cient decomposition of P
and further the computation of topological edge representations Z.

4.2 Algorithm and Analysis
In Algorithm 1, we display the pseudo-code of TER. Overall, TER
follows the two-stage framework of randomized SVD [17]. That
is, TER !rst forms an orthonormal basis R for the range of P, i.e.,
RR↗P = P. Second, the SVD results are obtained by factorizing
R↗P.
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Topological Edge Representation. As pinpointed by [41, 59],
classic unsupervised GRL solutions [16, 39, 48, 74] (e.g., DeepWalk
and node2vec) essentially factorize a matrix capturing the high-
order proximities between nodes in the graph. A series of subse-
quent works [37, 40, 59, 61, 66, 70, 72] have demonstrated the high
result utility of factorizing node-wise HOP (e.g., PPR, HKPR and
Katz index) matrices. Following this paradigm, we formulate the
topological edge representation learning as the following objective:

∑
𝐿𝐿 →𝑀

∑
𝐿 𝑀 →𝑀

(
𝛚[𝐿𝑁 , 𝐿 𝑂 ] ↑ Z[𝐿𝑁 ] · Z[𝐿 𝑂 ]

)2, (3)

where 𝛚 is the edge-wise HOP de!ned in Section 3.2 and Z[𝐿𝑁 ]
signi!es the topological edge representation of edge 𝐿𝑁 . Intuitively,
the objective function is to ensure that the high-order proximity
between edges 𝐿𝑁 , 𝐿 𝑂 can be approximated using the dot product of
their respective representations, i.e., Z[𝐿𝑁 ] · Z[𝐿 𝑂 ], which can be
rewritten as a low-rank approximation problem:

min
Z→R𝑁↓𝑂

↔𝛚 ↑ ZZ↗↔2𝑃 . (4)

Attributed Edge Representation. Aside from structural features
of the graph, edge attributes are another key factor that can lead to
improved accuracy in downstream tasks. Nowadays, GNNs have
become canonical models for exploiting attribute information in
node-wise prediction tasks. As revealed by a number of decoupled
GNN models [7, 9, 12, 52, 56, 65], the key recipe of GNNs is the
feature aggregation operation. To be more speci!c, a representation
matrix X can be precomputed by multiplying the high-order prox-
imity matrix 𝛚 with the raw attribute matrix X before feeding it
to the task-speci!c neural networks. Likewise, we can obtain such
attributed edge representations via the following equation:

X = 𝛚X, (5)

where for any node 𝐿 → 𝑀 and any attribute 𝑁 → 𝑂

X[𝐿𝑁 ,𝑁 𝑂 ] =
∑
𝐿𝑃 →𝑀 𝛚[𝐿𝑁 , 𝐿𝑄 ] · X[𝐿𝑄 ,𝑁 𝑂 ], (6)

meaning that the representation X[𝐿𝑁 ,𝑁 𝑂 ] of edge 𝐿𝑁 at attribute
𝑁 𝑂 aggregates edge 𝐿𝑄 ’s attribute value X[𝐿𝑄 ,𝑁 𝑂 ] weighted by their
HOP 𝛚[𝐿𝑁 , 𝐿𝑄 ]. Intuitively, the more proximal the two edges are, the
more similar their attributes are.

For graphs without edge attributes, we can utilize the topologi-
cal edge representations Z. As for edge-attributed graphs, distinct
from existing methods that overlook the topological features of
G and only account for the attributed edge representations, we
augment X with Z by concatenating them as the edge feature repre-
sentations, which leads to impressive performance enhancements
as validated by our experiments in Section 6. In Sections 4 and 5,
we present two e"cient algorithms for learning topological edge
representations and attributed edge representations by optimizing
the above-mentioned objectives, respectively.

4 THE TER ALGORITHM
Notwithstanding substantial well-established matrix factorization
and dimensionality reduction techniques, the problem in Eq. (4) re-
mains tenaciously challenging to address due to the immense costs
incurred by the computation and materialization of HOP matrix
𝛚. The state-of-the-art solution [61] to node-wise GRL mitigates

this issue by !rst reducing the sparse transition matrix into low-
dimensional matrices and incorporating high-order information
with a number of matrix multiplications. However, our edge-wise
transition matrix P de!ned in Eq. (1) is highly dense (with up to
𝑃 (𝑄2) entries in the worst case), rendering it impractical to adopt
the technique in [61]. Additionally, to our knowledge, all prior
works for node-wise GRL actually preserve the truncated version
of Eq. 2 (relying on specifying a maximum number of random walk
hops), failing to fully preserve the high-order proximity, and hence,
leading to sub-par result utilities. To this end, this section presents
TER, which obtains topological representations for edges by opti-
mizing the objective in Eq. (4) without explicitly constructing the
HOP matrix 𝛚. The high-level idea behind TER is delineated in Sec-
tion 4.1, followed by a detailed description and analysis in Section
4.2.

4.1 Basic Idea
Recall that theHOPmatrix𝛚 in Eq. (2) is a weighted sum of di#erent
orders of matrix powers of P. Intuitively, if we can represent P as
U𝛆U↗, where 𝛆 is a diagonal matrix and U is orthonormal (i.e.,
U↗U = I), we can obtain

𝛚 = U ·
(∑↘

𝑅=0𝑅 (𝑆)𝛆𝑅
)
· U↗, (7)

which implies that we can utilize Z = U
√∑↘

𝑅=0𝑅 (𝑆)𝛆𝑅 as the topo-
logical edge representations. In such a manner, we can avoid the
construction of matrix 𝛚 and reduce the problem in Eq. (4) to the
factorization of P. Through rigorous theoretical analysis and the
unique property of P in Lemma 3.1, Theorem 4.1 o#ers a viable
solution to implement the above-said idea, allowing us to capture
high-order proximity between nodes without performing numerous
iterations of expensive matrix multiplications.

T!"#$"% 4.1. Let U be the exact singular vectors of P and the
diagonal entries in the diagonal matrix 𝛝 be the singular values. Then,
we have

𝛚𝑆 =
∑↘
𝑅=0 𝑇 (1 ↑ 𝑇)𝑅P𝑅 = U ·

(
I↑(1↑𝑆)𝛝

𝑆

)↑1
· U↗, (8)

when weight function𝑅 (𝑆) = 𝑇 (𝑁 ↑ 𝑇)𝑅 follows a geometric distribu-
tion, and

𝛚𝑇 =
∑↘
𝑅=0

𝐿↑𝑄𝑇𝑅
𝑅 ! · P𝑅 = U · 𝐿𝑄𝛝

𝐿𝑄
· U↗, (9)

when weight function𝑅 (𝑆) = 𝐿↑𝑄𝑇𝑅
𝑅 ! follows a Poisson distribution.

Further, based on Theorem 4.1, the problem in Eq. (4) can the
transformed to compute the top-𝑈 singular values 𝛝 and the corre-
sponding singular vectors U of P. Notice that the materialization
of P is still highly time- and space-consuming (up to 𝑃 (𝑄2) in
the worst case). To this end, we propose TER, which leverages and
tweaks randomized SVD [17] for the e"cient decomposition of P
and further the computation of topological edge representations Z.

4.2 Algorithm and Analysis
In Algorithm 1, we display the pseudo-code of TER. Overall, TER
follows the two-stage framework of randomized SVD [17]. That
is, TER !rst forms an orthonormal basis R for the range of P, i.e.,
RR↗P = P. Second, the SVD results are obtained by factorizing
R↗P.
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Topological Edge Representation. As pinpointed by [41, 59],
classic unsupervised GRL solutions [16, 39, 48, 74] (e.g., DeepWalk
and node2vec) essentially factorize a matrix capturing the high-
order proximities between nodes in the graph. A series of subse-
quent works [37, 40, 59, 61, 66, 70, 72] have demonstrated the high
result utility of factorizing node-wise HOP (e.g., PPR, HKPR and
Katz index) matrices. Following this paradigm, we formulate the
topological edge representation learning as the following objective:

∑
𝐿𝐿 →𝑀

∑
𝐿 𝑀 →𝑀

(
𝛚[𝐿𝑁 , 𝐿 𝑂 ] ↑ Z[𝐿𝑁 ] · Z[𝐿 𝑂 ]

)2, (3)

where 𝛚 is the edge-wise HOP de!ned in Section 3.2 and Z[𝐿𝑁 ]
signi!es the topological edge representation of edge 𝐿𝑁 . Intuitively,
the objective function is to ensure that the high-order proximity
between edges 𝐿𝑁 , 𝐿 𝑂 can be approximated using the dot product of
their respective representations, i.e., Z[𝐿𝑁 ] · Z[𝐿 𝑂 ], which can be
rewritten as a low-rank approximation problem:

min
Z→R𝑁↓𝑂

↔𝛚 ↑ ZZ↗↔2𝑃 . (4)

Attributed Edge Representation. Aside from structural features
of the graph, edge attributes are another key factor that can lead to
improved accuracy in downstream tasks. Nowadays, GNNs have
become canonical models for exploiting attribute information in
node-wise prediction tasks. As revealed by a number of decoupled
GNN models [7, 9, 12, 52, 56, 65], the key recipe of GNNs is the
feature aggregation operation. To be more speci!c, a representation
matrix X can be precomputed by multiplying the high-order prox-
imity matrix 𝛚 with the raw attribute matrix X before feeding it
to the task-speci!c neural networks. Likewise, we can obtain such
attributed edge representations via the following equation:

X = 𝛚X, (5)

where for any node 𝐿 → 𝑀 and any attribute 𝑁 → 𝑂

X[𝐿𝑁 ,𝑁 𝑂 ] =
∑
𝐿𝑃 →𝑀 𝛚[𝐿𝑁 , 𝐿𝑄 ] · X[𝐿𝑄 ,𝑁 𝑂 ], (6)

meaning that the representation X[𝐿𝑁 ,𝑁 𝑂 ] of edge 𝐿𝑁 at attribute
𝑁 𝑂 aggregates edge 𝐿𝑄 ’s attribute value X[𝐿𝑄 ,𝑁 𝑂 ] weighted by their
HOP 𝛚[𝐿𝑁 , 𝐿𝑄 ]. Intuitively, the more proximal the two edges are, the
more similar their attributes are.

For graphs without edge attributes, we can utilize the topologi-
cal edge representations Z. As for edge-attributed graphs, distinct
from existing methods that overlook the topological features of
G and only account for the attributed edge representations, we
augment X with Z by concatenating them as the edge feature repre-
sentations, which leads to impressive performance enhancements
as validated by our experiments in Section 6. In Sections 4 and 5,
we present two e"cient algorithms for learning topological edge
representations and attributed edge representations by optimizing
the above-mentioned objectives, respectively.

4 THE TER ALGORITHM
Notwithstanding substantial well-established matrix factorization
and dimensionality reduction techniques, the problem in Eq. (4) re-
mains tenaciously challenging to address due to the immense costs
incurred by the computation and materialization of HOP matrix
𝛚. The state-of-the-art solution [61] to node-wise GRL mitigates

this issue by !rst reducing the sparse transition matrix into low-
dimensional matrices and incorporating high-order information
with a number of matrix multiplications. However, our edge-wise
transition matrix P de!ned in Eq. (1) is highly dense (with up to
𝑃 (𝑄2) entries in the worst case), rendering it impractical to adopt
the technique in [61]. Additionally, to our knowledge, all prior
works for node-wise GRL actually preserve the truncated version
of Eq. 2 (relying on specifying a maximum number of random walk
hops), failing to fully preserve the high-order proximity, and hence,
leading to sub-par result utilities. To this end, this section presents
TER, which obtains topological representations for edges by opti-
mizing the objective in Eq. (4) without explicitly constructing the
HOP matrix 𝛚. The high-level idea behind TER is delineated in Sec-
tion 4.1, followed by a detailed description and analysis in Section
4.2.

4.1 Basic Idea
Recall that theHOPmatrix𝛚 in Eq. (2) is a weighted sum of di#erent
orders of matrix powers of P. Intuitively, if we can represent P as
U𝛆U↗, where 𝛆 is a diagonal matrix and U is orthonormal (i.e.,
U↗U = I), we can obtain

𝛚 = U ·
(∑↘

𝑅=0𝑅 (𝑆)𝛆𝑅
)
· U↗, (7)

which implies that we can utilize Z = U
√∑↘

𝑅=0𝑅 (𝑆)𝛆𝑅 as the topo-
logical edge representations. In such a manner, we can avoid the
construction of matrix 𝛚 and reduce the problem in Eq. (4) to the
factorization of P. Through rigorous theoretical analysis and the
unique property of P in Lemma 3.1, Theorem 4.1 o#ers a viable
solution to implement the above-said idea, allowing us to capture
high-order proximity between nodes without performing numerous
iterations of expensive matrix multiplications.

T!"#$"% 4.1. Let U be the exact singular vectors of P and the
diagonal entries in the diagonal matrix 𝛝 be the singular values. Then,
we have

𝛚𝑆 =
∑↘
𝑅=0 𝑇 (1 ↑ 𝑇)𝑅P𝑅 = U ·

(
I↑(1↑𝑆)𝛝

𝑆

)↑1
· U↗, (8)

when weight function𝑅 (𝑆) = 𝑇 (𝑁 ↑ 𝑇)𝑅 follows a geometric distribu-
tion, and

𝛚𝑇 =
∑↘
𝑅=0

𝐿↑𝑄𝑇𝑅
𝑅 ! · P𝑅 = U · 𝐿𝑄𝛝

𝐿𝑄
· U↗, (9)

when weight function𝑅 (𝑆) = 𝐿↑𝑄𝑇𝑅
𝑅 ! follows a Poisson distribution.

Further, based on Theorem 4.1, the problem in Eq. (4) can the
transformed to compute the top-𝑈 singular values 𝛝 and the corre-
sponding singular vectors U of P. Notice that the materialization
of P is still highly time- and space-consuming (up to 𝑃 (𝑄2) in
the worst case). To this end, we propose TER, which leverages and
tweaks randomized SVD [17] for the e"cient decomposition of P
and further the computation of topological edge representations Z.

4.2 Algorithm and Analysis
In Algorithm 1, we display the pseudo-code of TER. Overall, TER
follows the two-stage framework of randomized SVD [17]. That
is, TER !rst forms an orthonormal basis R for the range of P, i.e.,
RR↗P = P. Second, the SVD results are obtained by factorizing
R↗P.
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How Universal Polynomial Bases Enhance Spectral Graph Neural Networks

are from the same classes in graphs, the more beneficial the
message passing for information aggregation. Therefore,
we adopt edge homophily as the homophily metric.

In addition to the homophily metrics for categorical node
labels, the similarity of numerical node signals can also be
measured via Dirichlet Enenrgy (Zhou et al., 2021; Karhad-
kar et al., 2023) (Detailed discussion in Section 5). In
terms of spectral perspective, we propose spectral signal
frequency, a metric customized for node signals x → Rn.

Definition 2.2 (Spectral Signal Frequency f ). Consider
a graph G = (V, E) with n nodes and Laplacian matrix
L. Given a normalized feature signal x → Rn, the spectral
signal frequency f(x) on G is defined as f(x) = x→Lx

2 .

By nature of the Laplacian matrix, spectral signal frequency
f(x) quantifies the discrepancy of signal x on graph G.
Formally, the spectral signal frequency f(x) holds that

Proposition 2.3. For any normalized feature signal x → Rn

on graph G, f(x) → [0, 1].

3. Polynomial Graph Filters
Optimal graph filters perform eigendecomposition on the
Laplacian matrix with a computation cost of O(n3). To
bypass the significant computation overhead, substantial
polynomial graph filters (Chien et al., 2021; Wang & Zhang,
2022; He et al., 2022; Guo & Wei, 2023; Huang et al.,
2024) have been proposed to approximate optimal graph
filters by leveraging different polynomials (see Table 5 in
Appendex A). By identifying an appropriate propagation
matrix P, those polynomial filters on graph signal x → Rn

is equally expressed as

z =
∑K

k=0 wkPk · x, (2)

where K is the propagation hops, w → RK+1 is the learn-
able weight vector, and z → Rn is the final representation.
For example, BernNet (He et al., 2021) utilizes Bernstein
polynomial as z =

∑K
k=0

w↑
k

2K

(K
k

)
(2I↑L)K→kLkx. By set-

ting P = I↑ L
2 and reorganizing the equation, we derive an

equivalent formulation as z =
∑K

k=0 wk

(
I↑ L

2

)k
x where

wk =
k∑

i=0

w↑
k→i

(
K

K ↑ i

)(
K ↑ i

k ↑ i

)
(↑1)k→i

works as the new learnable parameter.

In Equation (2), the vectors Pkx for k → {0, 1, · · · ,K} col-
lectively constitute a signal basis {P0x,P1x, · · · ,PKx}.
Spectral graph filters aim to generate node represen-
tations within graphs with various heterophily degrees
by learning a weighted combination of the signal ba-
sis. From the spectral perspective, they essentially de-
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Figure 1: Left: Converging trend of homophily bases.
Right: Construction procedure of heterophily bases.

rive signals with the desired frequency from the spec-
trum {f(P0x), f(P1x), · · · , f(PKx)}, ensuring align-
ment with label signals Y. According to Definition 2.1
and 2.2, the homophily ratio h and the frequency of la-
bel signals attempt to epitomize the inconsistency of label
information distributed on graphs. This fact manifests the in-
herent correlation between the filtered signal

∑K
k=0 wkPkx

and h. Therefore, we propose a theorem to formally depict
the correlation.

Theorem 3.1. Given a connected graph G = (V, E) with
homophily ratio h, consider an optimal polynomial filter
F(w) =

∑K
k=0 wkPk with propagation matrix P and

weights w → RK+1 for node classification. Given a feature
signal x → Rn, the spectral frequency f(

∑K
k=0 wkPkx) is

proportional to 1↑h.

Theorem 3.1 clarifies that ideal signal bases are obligated
to incorporate the heterophily properties of graphs. This
implies that high-frequency signals can be more desirable
on heterophily graphs. However, the majority of existing
polynomial filters ignore the graph homophily ratios while
relying on predefined polynomials instead, thereby yielding
suboptimal performance.

4. Universal Polynomial Basis for Graph
Filters

In this section, we develop a novel universal polynomial
basis, denoted as UniBasis, and subsequently we present
a general polynomial filter, referred to as UniFilter, built
upon UniBasis. Specifically, the construction of UniBa-
sis involves the integration of two foundational compo-
nents: the traditional homophily basis {x,Px, · · · ,PKx}
(Section 4.1), and an innovative adaptive heterophily ba-
sis {u0,u1, · · · ,uK} (Section 4.2), governed by a hy-
perparameter ω → [0, 1]. This integration, formulated as
ωPkx+ (1↑ ω)uk, enables UniBasis the adaptability for a
variety of heterophily graphs. Consequently, the polynomial

3
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Algorithm 1 Heterophily Basis
Input: Graph G, propagation matrix P, input feature signal

x, hop K, estimated homophily ratio ĥ

Output: Heterophily basis {u0,u1, · · · ,uK}
1 u0 → x

→x→ , v0 → u0, v↑1 → 0, s0 → u0, ω → (1↑ĥ)ω
2

for k → 1 to K do
2 vk → Pvk↑1

3 vk → vk ↑ (v↓
k vk↑1)vk↑1 ↑ (v↓

k vk↑2)vk↑2

4 vk → vk
→vk→ , uk → sk→1

k

5 tk is calculated as in Equation (4)
6 uk → uk+tkvk

→uk+tkvk→ , sk → sk↑1 + uk

7 return {u0,u1, · · · ,uK}

with homophily ratio h. It holds that ↓i, j ↔ {0, 1, · · · ,K},

ui · uj =

{
cos( (1↑h)ω

2 ) if i ↗= j,

1 if i = j.

As shown in Equation (3), UniBasis is constructed as
εPkx + (1 ↑ ε)uk by integrating homophily basis and
heterophily basis with a parameter ε ↔ [0, 1]. This inte-
gration yields enhanced adaptability of UniBasis to various
graphs. Consequently, UniBasis is better equipped to learn
optimal weight parameters during model training compared
with fixed polynomials.

Estimation of homophily ratio. The accurate calculation
of the homophily ratio h relies on the label set of the entire
graphs, which remains inaccessible. To circumvent this is-
sue, we estimate h through labels of training data, denoted
as ĥ, as the input for UniFilter. We validate the estimation
accuracy in the ablation study (Section 6.3) and robustness
in Appendix D. As shown, h can be efficiently estimated via
a small proportion of labeled training nodes without com-
promising the performance of UniFilter. This fact signifies
that the estimated homophily ratio ĥ can serve as an ideal
substitute for h.

Time complexity. Algorithm 1 consists of K iterations.
In the k-th iteration, it takes O(m + n) to calculate the
orthonormal basis and O(n) to update uk. Therefore, the
total time complexity of Algorithm 1 is O(K(m+ n)), i.e.,
linear to propagation hops and input graph sizes.

4.3. UniBasis for Graph Explanation

Once UniFilter is well-trained, the derived UniBasis with
the learned weights demystifies the spectral properties of
graph signals. Specifically, given a graph G with node sig-
nal x, UniBasis constitutes the spectrum {f(x), f(εPx +
(1 ↑ ε)u1), · · · , f(εPKx + (1 ↑ ε)uK)}. The k-th
learned weight wk from the weight vector w ↔ RK+1

acts as the amplification factor of the signal in frequency
f(εPkx+ (1↑ ε)uk). Consequently, the weight vector w
discloses the significance of each frequency component in
G, thereby unfolding the distribution of graph signals and
offering insights into the hidden spectral property.

As validated in Section 6.2, the experimental results (Fig-
ure 2) demonstrate the superior capability of UniBasis to
capture the spectral characteristics of graphs across diverse
heterophily degrees. Akin to the Fourier transform in signal
processing, UniBasis manifests its potential as a promising
approach for graph explanation.

5. Theoretical Analysis
Every pair of vectors (ui,uj) from the heterophily basis
form the angle of ω. Among them, u0 → x

→x→ is the nor-
malized input node signal x. In this regard, any heterophily
vector ui for i ↔ {1, 2, · · · ,K} can be obtained by rotat-
ing x with ω degree via a certain rotation matrix Pε, i.e.,
ui := Pεx. Formally, the rotation matrix is defined as
Definition 5.1 (Rotation matrix). Matrix Pε ↔ Rn↔n is a
rotation matrix if there exists a unitary matrix U ↔ Cn↔n

such that R(ω) := U↑1PεU where

R(ω) =





cos ω ↑ sin(ω) 0 · · ·
sin(ω) cos ω 0 · · ·

0 0 1 · · ·
· · · · · ·

0 0 · · · 1




.

Therefore, UniFilter in Equation (3) can be reformulated as

z =
∑K

k=0 wk

(
(εPk + (1↑ ε)Pε,k)x

)
, (5)

where Pε,k is the k-th rotation matrix and εPk+(1↑ε)Pε,k

works as the convolutional matrix of the k-th layer.

Over-smoothing analysis. Consider a node feature ma-
trix X ↔ Rn↔d where d is the feature dimension. The
similarity of node representations at the k-th layer on
graph G is measured by Dirichlet energy as E(G,Xk) =
1
n

∑
v↗V

∑
u↗Nv

↘Xk
v ↑ Xk

u↘22 where Xk is the resultant
feature matrix at the k-th layer. Over-smoothing occurs if
E(G,Xk) ≃ 0 for a sufficiently large k. In terms of this,
we substantiate that UniFilter prevents over-smoothing.
Theorem 5.2. Given a node feature matrix X ↔ Rn↔d on
graph G, let Xk = (εPk + (1 ↑ ε)Pε,k)X. It holds that
limK↘≃ E(G,Xk) = (1↑ ε)E(G,X).

Over-squashing analysis. Over-squashing (Alon & Yahav,
2021; Topping et al., 2022) describes the phenomenon that
exponentially growing information from distant nodes is
squeezed into fixed-size vectors during message passing on
graphs. Over-squashing is usually measured by the Jacobian

5
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Graph
Heterophily
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• Spectral explanation
How Universal Polynomial Bases Enhance Spectral Graph Neural Networks

are from the same classes in graphs, the more beneficial the
message passing for information aggregation. Therefore,
we adopt edge homophily as the homophily metric.

In addition to the homophily metrics for categorical node
labels, the similarity of numerical node signals can also be
measured via Dirichlet Enenrgy (Zhou et al., 2021; Karhad-
kar et al., 2023) (Detailed discussion in Section 5). In
terms of spectral perspective, we propose spectral signal
frequency, a metric customized for node signals x → Rn.

Definition 2.2 (Spectral Signal Frequency f ). Consider
a graph G = (V, E) with n nodes and Laplacian matrix
L. Given a normalized feature signal x → Rn, the spectral
signal frequency f(x) on G is defined as f(x) = x→Lx

2 .

By nature of the Laplacian matrix, spectral signal frequency
f(x) quantifies the discrepancy of signal x on graph G.
Formally, the spectral signal frequency f(x) holds that

Proposition 2.3. For any normalized feature signal x → Rn

on graph G, f(x) → [0, 1].

3. Polynomial Graph Filters
Optimal graph filters perform eigendecomposition on the
Laplacian matrix with a computation cost of O(n3). To
bypass the significant computation overhead, substantial
polynomial graph filters (Chien et al., 2021; Wang & Zhang,
2022; He et al., 2022; Guo & Wei, 2023; Huang et al.,
2024) have been proposed to approximate optimal graph
filters by leveraging different polynomials (see Table 5 in
Appendex A). By identifying an appropriate propagation
matrix P, those polynomial filters on graph signal x → Rn

is equally expressed as

z =
∑K

k=0 wkPk · x, (2)

where K is the propagation hops, w → RK+1 is the learn-
able weight vector, and z → Rn is the final representation.
For example, BernNet (He et al., 2021) utilizes Bernstein
polynomial as z =

∑K
k=0

w↑
k

2K

(K
k

)
(2I↑L)K→kLkx. By set-

ting P = I↑ L
2 and reorganizing the equation, we derive an

equivalent formulation as z =
∑K

k=0 wk

(
I↑ L

2

)k
x where

wk =
k∑

i=0

w↑
k→i

(
K

K ↑ i

)(
K ↑ i

k ↑ i

)
(↑1)k→i

works as the new learnable parameter.

In Equation (2), the vectors Pkx for k → {0, 1, · · · ,K} col-
lectively constitute a signal basis {P0x,P1x, · · · ,PKx}.
Spectral graph filters aim to generate node represen-
tations within graphs with various heterophily degrees
by learning a weighted combination of the signal ba-
sis. From the spectral perspective, they essentially de-
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Figure 1: Left: Converging trend of homophily bases.
Right: Construction procedure of heterophily bases.

rive signals with the desired frequency from the spec-
trum {f(P0x), f(P1x), · · · , f(PKx)}, ensuring align-
ment with label signals Y. According to Definition 2.1
and 2.2, the homophily ratio h and the frequency of la-
bel signals attempt to epitomize the inconsistency of label
information distributed on graphs. This fact manifests the in-
herent correlation between the filtered signal

∑K
k=0 wkPkx

and h. Therefore, we propose a theorem to formally depict
the correlation.

Theorem 3.1. Given a connected graph G = (V, E) with
homophily ratio h, consider an optimal polynomial filter
F(w) =

∑K
k=0 wkPk with propagation matrix P and

weights w → RK+1 for node classification. Given a feature
signal x → Rn, the spectral frequency f(

∑K
k=0 wkPkx) is

proportional to 1↑h.

Theorem 3.1 clarifies that ideal signal bases are obligated
to incorporate the heterophily properties of graphs. This
implies that high-frequency signals can be more desirable
on heterophily graphs. However, the majority of existing
polynomial filters ignore the graph homophily ratios while
relying on predefined polynomials instead, thereby yielding
suboptimal performance.

4. Universal Polynomial Basis for Graph
Filters

In this section, we develop a novel universal polynomial
basis, denoted as UniBasis, and subsequently we present
a general polynomial filter, referred to as UniFilter, built
upon UniBasis. Specifically, the construction of UniBa-
sis involves the integration of two foundational compo-
nents: the traditional homophily basis {x,Px, · · · ,PKx}
(Section 4.1), and an innovative adaptive heterophily ba-
sis {u0,u1, · · · ,uK} (Section 4.2), governed by a hy-
perparameter ω → [0, 1]. This integration, formulated as
ωPkx+ (1↑ ω)uk, enables UniBasis the adaptability for a
variety of heterophily graphs. Consequently, the polynomial
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 P is usually the variants of L, e.g., P=L, P=I-L, P= I-L/2.

Introduction

𝑔𝑤(𝐿) ∙ x = 𝑈𝑔𝑤(Λ)𝑈𝑇 ∙ x

𝑔𝑤(Λ) = diag [𝑔𝑤(𝜆1), 𝑔𝑤(𝜆2), … , 𝑔𝑤(𝜆𝑛)]

Polynomial Filters in Krylov Subspace 
 Krylov Subspace

 Given a matrix 𝐴 ∈ 𝑅𝑛×𝑛 and a vector v ∈ 𝑅𝑛, an order-K Krylov
subspace is 𝒦𝐾(𝐴, v)={v, 𝐴v, 𝐴2v, … , 𝐴𝐾−1v}.

 Initially proposed to solve large linear algebra system.
 Polynomial Filters z = σ𝑘=0

𝐾 𝑤𝑘𝑃𝑘 ∙ x
 Belonging to Krylov subspace 𝒦𝐾+1(𝑃, x)={x, 𝑃x, 𝑃2x, … , 𝑃𝐾x}

 Limited Adaptability of Propagation Matrix 𝑃
 Fixed for all graphs
 Asymptotically converges at various speeds

z = 𝑈𝑔𝑤 Λ 𝑈𝑇 ∙ x ≈ σ𝑘=0
𝐾 𝑤𝑘𝑃𝑘 ∙ x

Polynomial Filters from Adaptive Krylov Subspace 
 Adaptive Propagation Matrix derived from Graph Heat Equation

 Adaptive Krylov Subspace
 𝒦𝐾 𝑃𝜏, x = {x, 𝑃𝜏x, 𝑃𝜏2x, … , 𝑃𝜏𝐾−1x}

 Reshape the Spectrum for Adaptability
 Spectrum of L: {𝜆1, 𝜆2, … , 𝜆𝑛}
 Spectrum of L𝜏: {𝜆1 𝜏 , 𝜆2 𝜏 , … , 𝜆𝑛(𝜏)}
 Property
 𝜆𝑖 𝜏 is a monotonically increasing function of 𝜏.
 𝜆𝑖 𝜏 ≤ 𝜆𝑖 if 𝜏 ∈ (0,1]; 𝜆𝑖 𝜏 > 𝜆𝑖 if 𝜏 > 1.

 AdaptKry Filter via Adaptive Krylov Basis
 Adaptive Krylov subspace

 Given graph signal x ∈ 𝑅𝑛 and propagation matrix 𝑃𝜏

 Extended AdaptKry Filter

𝑑H𝑡

𝑑𝑡
= −𝐿Ht

𝑃 = 1 − 𝜏 I + 𝜏𝐷−1/2𝐴𝐷−1/2

𝜏 → 0

renormalization

𝑃𝜏 = (𝜏𝐷 + 1 − 𝜏 I)−1/2(𝜏𝐴 + 1 − 𝜏 I)(𝜏𝐷 + 1 − 𝜏 I)−1/2

z =
𝑘=0

𝐾
𝑤𝑘𝑃𝜏𝑘 ∙ x

𝒦𝐾 𝑃𝜏, x = {x, 𝑃𝜏x, 𝑃𝜏2x, … , 𝑃𝜏𝐾−1x}

Given graph signal x ∈ 𝑅𝑛 and 𝑟 ∈ 𝑁 adaptive Krylov bases

where 𝑤𝑘 =
σ𝑖=0
𝑟 𝑤𝑘

𝑖

𝑟
.

Experiments

<latexit sha1_base64="hOg9AG3RAhNWnp/ksU6xjmBpWyw="></latexit>
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Spectral Embedding: Takeaways

TER [KDD’23]  
S3GCL [ICML’24]

o Extending spectral embedding to edge-level 
task and contrastive learning

Channel Combination Adaptive Selection

LD2 [NeurIPS’23]

o 2-hop MP for global information
o Link spatial & spectral computation

AdaptKry [WWW’24]

o MP as heat diffusion
o Adjust graph normalization

UniFilter [ICML’24]

o Link spatial & spectral computation
o Additional bias for hop-wise heterophily



Spectral Embedding: Applications

• Image as graph: better depict unstructured relationships, e.g. contextual 
connection of segmentations

Image Filtering 

M He et al, " BernNet: Learning Arbitrary Graph Spectral 
Filters via Bernstein Approximation", NeurIPS’21. 

(a) Original (b) Low-pass (c) High-pass (d) Band-pass (e) Band-rejection (f) Comb

Figure 3: A input image and the filtering results.

Table 2: Average sum of squared error and R2 score in parentheses.

Low-pass High-pass Band-pass Band-rejection Comb

exp(�10�2) 1� exp(�10�2) exp(�10(�� 1)2) 1� exp(�10(�� 1)2) | sin(⇡�)|
GCN 3.4799(.9872) 67.6635(.2364) 25.8755(.1148) 21.0747(.9438) 50.5120(.2977)
GAT 2.3574(.9905) 21.9618(.7529) 14.4326(.4823) 12.6384(.9652) 23.1813(.6957)
GPR-GNN 0.4169(.9984) 0.0943(.9986) 3.5121(.8551) 3.7917(.9905) 4.6549(.9311)
ARMA 1.8478(.9932) 1.8632(.9793) 7.6922(.7098) 8.2732(.9782) 15.1214(.7975)
ChebNet 0.8220(.9973) 0.7867(.9903) 2.2722(.9104) 2.5296(.9934) 4.0735(.9447)
BernNet 0.0314(.9999) 0.0113(.9999) 0.0411(.9984) 0.9313(.9973) 0.9982(.9868)

4 Related Work

Graph neural networks (GNNs) can be broadly divided into spectral-based GNNs and spatial-based
GNNs [33].

Spectral-based GNNs design spectral graph filters in the spectral domain. ChebNet [7] uses Chebyshev
polynomial to approximate a filter. GCN [13] simplifies the Chebyshev filter with the first-order
approximation. GraphHeat [34] uses heat kernel to design a graph filter. APPNP [14] utilizes
Personalized PageRank (PPR) to set the filter weights. GPR-GNN [5] learns the polynomial filters
via gradient descent on the polynomial coefficients. ARMA [2] learns a rational filter via the family
of Auto-Regressive Moving Average filters [21]. AdaGNN [9] learns simple filters across multiple
layers with a single parameter for each feature channel at each layer. As aforementioned, these
methods mainly focus on designing low- or high-pass filters or learning filters without any constraints,
which may lead to misspecified even ill-posed filters.

On the other hand, spatial-based GNNs directly propagate and aggregate graph information in the
spatial domain. From this perspective, GCN [13] can be explained as the aggregation of the one-hop
neighbor information on the graph. GAT [30] uses the attention mechanism to learn aggregation
weights. Recently, Balcilar et al. [1] bridge the gap between spectral-based and spatial-based GNNs
and unify GNNs in the same framework. Their work shows that the GNNs can be interpreted as
sophisticated data-driven filters. This motivates the design of the proposed BernNet, which can learn
arbitrary non-negative spectral filters from real-world graph signals.

5 Experiments

In this section, we conduct experiments to evaluate BernNet’s capability to learn arbitrary filters as
well as the performance of BernNet on real datasets. All the experiments are conducted on a machine
with an NVIDIA TITAN V GPU (12GB memory), Intel Xeon CPU (2.20 GHz), and 512GB of RAM.

5.1 Learning filters from the signal

We conduct an empirical analysis on 50 real images with the resolution of 100×100 from the Image
Processing Toolbox in Matlab. We conduct independent experiments on these 50 images and report
the average of the evaluation index. Following the experimental setting in [1], we regard each image
as a 2D regular 4-neighborhood grid graph. The graph structure translates to an 10, 000 ⇥ 10, 000
adjacency matrix while the pixel intensity translates to a 10, 000-dimensional signal vector.
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Spectral Embedding: Evaluation

• Global view is important 
for large-scale prediction

• Simple, invariable filters 
can also capture global 
view

Graph Propagation as Spectral Filter

N Liao et al, "A Comprehensive Benchmark 
on Spectral GNNs: The Impact on Efficiency, 
Memory, and Effectiveness", SIGMOD’26. 



Spectral Embedding: Evaluation

• Comprehensive evaluation on: efficiency, memory footprint, propagation 
hops of graph filters, … 

• Insights on finding fast and effective graph filters

Graph Propagation as Spectral Filter
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Spectral Embedding: Evaluation

• Weight transformation also affects spectral filtering

Weight Transformation as Spectral Filter

Y Dong et al, "Graph 
Neural Networks Are More 
Than Filters", ICLR’25. 
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Figure 3: Performance comparison in the average ranking of 14 GNNs on six real-world datasets.
The GNNs are shown by obtaining the best rankings on low frequency components (left), on middle
frequency components (middle), and on high frequency components (right).

5.4 CASE STUDY

Figure 4: Kendall’s ω comparison on new datasets
between a random ranking (orange), the rankings
from the original graph learning task (blue), and
the average rankings from our benchmark (green).

In this subsection, we conduct case study to ex-
plore RQ3. Specifically, we propose to simulate
real-world situations of choosing from different
GNNs and analyze how the findings from our
benchmark can help practitioners. Specifically,
we adopt six new real-world datasets, namely
Airport-Brazil (AB), Wisconsin (Wisc.), Cor-
nell (Corn.), Squirrel (Squi.), and Chameleon
(Cham.). Most of these dataests are reported
to be difficult for node classification task with
GNNs. We first perform node classification
task with all 14 GNNs based on these datasets
and then derive the ranking of all GNNs as r1.
Here r1 serves as the actual ranking we seek to
know to pick the best GNNs to use. However, in practice, we may not always be able to perform
experiments prior to making a choice. Therefore, we propose to analyze how well other rankings
can approximate such an actual ranking. We first analyze the node labels in the training node set to
identify the frequency component range (low, mid, or high) where most energy falls in. According to
this range, we collect the associated performance ranking r2 from Section 5.3 as the ranking derived
from our benchmark. As a comparison, we also collect random rankings r3 and the node classifica-
tion rankings r4 directly derived from the node classification task on the chosen six datasets.

We show the average Kendall-Tau (KT) distance ω (total number of inversions for any two positions
i and j where i > j) between the actual ranking r1 and the benchmark ranking r2 in Figure 4.
Here, a smaller KT distance indicates larger similarity between the two rankings. We found that the
KT distance between r1 and r2 (Benchmark Ranking ω ) is significantly smaller than that between
r1 and r3 (Random Ranking ω ) or r4 (Original Task Ranking ω ) in most cases, which indicates a
satisfying approximation of r1 with r2. This reveals the practical significance of the benchmark in
understanding the superiority across different GNNs prior to any experiments.

5.5 PARAMETER STUDY

We finally answer RQ4 by changing the layer number of GNNs to explore how the results of the
proposed evaluation protocol will change. We note that stacking multiple filters (by adding more
iterations of neighborhood aggregation) significantly affects the frequency response. Therefore,
existing studies that analyze the performance of GNNs relying on the frequency response typically
have significantly different conclusions when the layer number of GNNs changes. Specifically, we
range the number of GNN layers from two to four, and we present an example of the accuracy
curves in the spectral domain across two-, three-, and four-layer cases in Figure 5 (see Appendix F
for complete results). We observe that changing the layer number does not affect the shape of the
accuracy curves in the spectral domain. Such an observation can also be found across different
GNNs and datasets, which further validates the stability of the proposed evaluation protocol.

9

Simple Variable Recurrent



Graph Simplification
Advances in Designing Scalable GNNs



Spectral Embedding

20 min
11:45 ‒ 12:05

Outline

Graph Simplification
Ningyi Liao

Node-wise Similarity

Future Direction

Entry-wise

Layer-wise NIGCN [K Huang et al | WWW’23]

Unifiews [N Liao et al | ICML’25]

ATP [X Li et al | WWW’24]Pair-wise



Graph Simplification: Strategies

Raw Graph

Sampling

Sparsification

o Different graphs through 
training iterations

o Repetitive sampling 
overhead 

o Static graphs structure 
during learning

o Dedicated algorithms



Layer-wise Sparsification: NIGCN [WWW’23]

Graph Simplification

K Huang et al, "Node-Wise Diffusion for Scalable Graph Learning", WWW’23. 

• Coverage: smooth (GCN), PPR (GBP), HKPR (AGP)

• Applicable to decoupled architecture

General Heat Diffusion

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 
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Figure 1: Three exemplary expansion tendency of GHD. 

For the di!usion matrix P de"ned on G, we have � = 1 → Δ� .
Meanwhile, according to the analysis of Theorem 3.2, we know that 
P� [�, �] → � (�) = 

��
�=2 �� �� ��

� , representing the convergence, is
(usually) dominated by �� . As a result, di!usion on graphs with dif-
ferent densities, i.e., �G, converges at di!erent paces. In particular,
sparse graphs with small �G incurring large � tend to incorporate
neighbors in a long range while dense graphs with large �G in-
curring small � are prone to aggregate neighbors not far away. In 
addition, it has been widely reported in the literature [14, 23] that 
di!erent graphs ask for di!erent di!usion functions, which is also 
veri"ed by our experiments in Section 5.2. 

To serve the universal purpose, a quali"ed di!usion function 
should be able to (i) expand smoothly in long ranges, (ii) decrease 
sharply in short intervals, and (iii) peak at speci"ed hops, as re-
quired by various graphs accordingly. Clearly, the HKPR function 
in (3) ful"lls the latter two requirements but fails the "rst one since 
it decreases exponentially when � ↑ � . One may propose to con-
sider Personalized PageRank (PPR). However, the PPR function is
monotonically decreasing and thus cannot reach condition (iii). 

Inspired by the above analysis, we try to ameliorate � (�, �) to a 
universal di!usion function with a controllable change tendency for 
general purposes. To this end, we extend the graph heat di!usion 
Equation (3) by introducing an extra power parameter � ↓ R+ and
devise our General Heat Di!usion (GHD) function as

�� 
� (�, �, �) = (� !)� (4) · �

for the di!usion weight at the �-th hop, where � ↓ R+ is the new
heat parameter and � = 

�↔
(�
� 
! 
� 

)� is the normalization factor.�=0 
As desired, GHD can be regarded as a general extension of the 

graph heat di!usion model, and parameters � and � together de-
termine the expansion tendency. In particular, it is trivial to verify 
that GHD is degraded into HKPR when � = 1, and GHD becomes 
PPR when � = 0. As illustrated in Figure 1, by setting di!erent � 
and � combinations, GHD is able to exhibit smooth, exponential 
(i.e., PPR), or peak expansion (i.e., HKPR) tendency. 

3.4 Di!usion Model Design 
Upon �-distance and di!usion function UDF, our node-wise di!u-
sion model (NDM) can be concreted. Speci"cally, given a target set 
T ↗ V , the representation ZT under NDM is calculated as

�� 
ZT = UΓP� X, (5) 

�=0 

Huang et al. 

Algorithm 1: Node-wise Di!usion Model
Input: Graph G, feature matrix X, target set T ,

and hyperparameters � , � , � 
Output: Representation ZT

1 �max ↘ max� ↓T {�� };� ≃ � 
� �min�max2 � ↘ log� ;2� 

3 � is calculated according to (4); 
Γ ↘ I[T , ·], ZT ↘ 0 | T |⇐� ;4 

5 for � ↘ 0 to � do
6 U ↘ Diag{� (�, �, �) : ⇒� ↓ T };
7 ZT ↘ ZT + UΓ;
8 Γ ↘ ΓP, � ↘ � + 1;
9 ZT ↘ ZT X;

10 return ZT ;

where � = max{�� : ⇒� ↓ T }, U = Diag{� (�, �, �) : ⇒� ↓ T } ↓
R | T |⇐ | T | is a diagonal matrix, and Γ = I[T , ·] ↓ R | T |⇐� is the indi-
cator matrix, i.e., Γ [�,�] = 1 if T [�] = � and Γ [�,�] = 0 otherwise. 

The pseudo-code of NDM is presented in Algorithm 1. NDM 
"rst "nds the largest degree �max for nodes T , and computes the
corresponding �-distance as �. Then, NDM accumulates the weights 
of neighbors within � ranges for each node � ↓ T , recorded as 
ZT . Note that U[�,�] = 0 if � > �. Finally, representation ZT is
calculated by multiplying the feature matrix X.
Time Complexity. It takes � (�) time to calculate � using the
iterative methods [11], and hence computing � take � (� + |T |) 
time. Matrix multiplications UΓ and ΓP dominate the running time,
which takes time complexities of � (� |T |) and � (� |T |), respec-
tively. Therefore, as it takes � (� |T |) time to compute � T X, the
total time complexity of NDM is � ((� + �)� |T | + � |T |). 

4 OPTIMIZATION IN NODE 
REPRESENTATION LEARNING 

Algorithm 1 in Section 3 presents a general node-wise di!usion 
model. However, it is yet optimal to be applied to reality. In this 
section, we aim to instantiate NDM in a practical manner and 
optimize the procedure of feature propagations. 

4.1 Instantiation of NDM 
Practical Implementation of �-Distance. Calculating the �-
distance of each node is one of the critical steps in NDM, which 
requires the second largest eigenvalue � of the di!usion matrix. 
However, it is computationally expensive to compute � for large 
graphs. To circumvent the scenario, we employ property 3.1 to 
substitute � without damaging the e#cacy of NDM. 

As we analyze in Section 3.3, according to Property 3.1, we 
borrow a correction factor �G speci"c for graph G to ensure � =
1 → Δ� = ≃�

� 
G

G 
. Meanwhile, for the sake of practicality, we could

⇑merge hyperparameter � and �G into one tunable parameter � to
control the bound of �-distance �� such that

� 2� 2� ln → ln � ln� �min�� 
≃ ≃ 

�min���min�� ⇑ �� = log� = � := � � . (6)
2� ln �G → ln�G ln �G 
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P� [�, �] → � (�) = 
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�=2 �� �� ��

� , representing the convergence, is
(usually) dominated by �� . As a result, di!usion on graphs with dif-
ferent densities, i.e., �G, converges at di!erent paces. In particular,
sparse graphs with small �G incurring large � tend to incorporate
neighbors in a long range while dense graphs with large �G in-
curring small � are prone to aggregate neighbors not far away. In 
addition, it has been widely reported in the literature [14, 23] that 
di!erent graphs ask for di!erent di!usion functions, which is also 
veri"ed by our experiments in Section 5.2. 

To serve the universal purpose, a quali"ed di!usion function 
should be able to (i) expand smoothly in long ranges, (ii) decrease 
sharply in short intervals, and (iii) peak at speci"ed hops, as re-
quired by various graphs accordingly. Clearly, the HKPR function 
in (3) ful"lls the latter two requirements but fails the "rst one since 
it decreases exponentially when � ↑ � . One may propose to con-
sider Personalized PageRank (PPR). However, the PPR function is
monotonically decreasing and thus cannot reach condition (iii). 

Inspired by the above analysis, we try to ameliorate � (�, �) to a 
universal di!usion function with a controllable change tendency for 
general purposes. To this end, we extend the graph heat di!usion 
Equation (3) by introducing an extra power parameter � ↓ R+ and
devise our General Heat Di!usion (GHD) function as

�� 
� (�, �, �) = (� !)� (4) · �

for the di!usion weight at the �-th hop, where � ↓ R+ is the new
heat parameter and � = 

�↔
(�
� 
! 
� 

)� is the normalization factor.�=0 
As desired, GHD can be regarded as a general extension of the 

graph heat di!usion model, and parameters � and � together de-
termine the expansion tendency. In particular, it is trivial to verify 
that GHD is degraded into HKPR when � = 1, and GHD becomes 
PPR when � = 0. As illustrated in Figure 1, by setting di!erent � 
and � combinations, GHD is able to exhibit smooth, exponential 
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T ↗ V , the representation ZT under NDM is calculated as
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Output: Representation ZT
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where � = max{�� : ⇒� ↓ T }, U = Diag{� (�, �, �) : ⇒� ↓ T } ↓
R | T |⇐ | T | is a diagonal matrix, and Γ = I[T , ·] ↓ R | T |⇐� is the indi-
cator matrix, i.e., Γ [�,�] = 1 if T [�] = � and Γ [�,�] = 0 otherwise. 

The pseudo-code of NDM is presented in Algorithm 1. NDM 
"rst "nds the largest degree �max for nodes T , and computes the
corresponding �-distance as �. Then, NDM accumulates the weights 
of neighbors within � ranges for each node � ↓ T , recorded as 
ZT . Note that U[�,�] = 0 if � > �. Finally, representation ZT is
calculated by multiplying the feature matrix X.
Time Complexity. It takes � (�) time to calculate � using the
iterative methods [11], and hence computing � take � (� + |T |) 
time. Matrix multiplications UΓ and ΓP dominate the running time,
which takes time complexities of � (� |T |) and � (� |T |), respec-
tively. Therefore, as it takes � (� |T |) time to compute � T X, the
total time complexity of NDM is � ((� + �)� |T | + � |T |). 

4 OPTIMIZATION IN NODE 
REPRESENTATION LEARNING 

Algorithm 1 in Section 3 presents a general node-wise di!usion 
model. However, it is yet optimal to be applied to reality. In this 
section, we aim to instantiate NDM in a practical manner and 
optimize the procedure of feature propagations. 

4.1 Instantiation of NDM 
Practical Implementation of �-Distance. Calculating the �-
distance of each node is one of the critical steps in NDM, which 
requires the second largest eigenvalue � of the di!usion matrix. 
However, it is computationally expensive to compute � for large 
graphs. To circumvent the scenario, we employ property 3.1 to 
substitute � without damaging the e#cacy of NDM. 

As we analyze in Section 3.3, according to Property 3.1, we 
borrow a correction factor �G speci"c for graph G to ensure � =
1 → Δ� = ≃�

� 
G

G 
. Meanwhile, for the sake of practicality, we could

⇑merge hyperparameter � and �G into one tunable parameter � to
control the bound of �-distance �� such that

� 2� 2� ln → ln � ln� �min�� 
≃ ≃ 

�min���min�� ⇑ �� = log� = � := � � . (6)
2� ln �G → ln�G ln �G 
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• Bounds computation complexity & 
approximation precision

• Nested in graph propagation

Node-wise Diffusion Distancelu = 2

Node-wise Di!usion for Scalable Graph Learning 

However, all the aforementioned methods either (i) generate 
node representations for all nodes in the graphs even though la-
beled nodes in training are scarce or (ii) overlook the topological 
uniqueness of each node during feature propagation. Ergo, there is 
still room for improvement in both e!ciency and e!cacy. 

3 NODE-WISE DIFFUSION MODEL 
In this section, we reveal the weakness in existing di"usion models 
and then design NDM, consisting of two core components, i.e., (i) 
the di"usion matrix and the di"usion length for each node, and (ii) 
the universal di"usion function generalized to various graphs. 

3.1 Notations 
For the convenience of expression, we #rst de#ne the frequently 
used notations. We use calligraphic fonts, bold uppercase letters, 
and bold lowercase letters to represent sets (e.g., N ), matrices (e.g., 
A), and vectors (e.g., x), respectively. The �-th row (resp. column)
of matrix A is represented by A[�, ·] (resp. A[·, �]).

Let G = (V, E, X) be an undirected graph where V is the node
set with |V| = �, E is the edge set with |E | = �, and X → R�↑�

is the feature matrix. Each node � → V is associated with a � -
dimensional feature vector x� → X. For ease of exposition, node
� → V also indicates its index. Let N� be the direct neighbor set and
�� = |N� | be the degree of node �. Let A → R�↑� be the adjacency
matrix of G, i.e., A[�, �] = 1 if ↓�, �↔ → E; otherwise A[�, �] = 0,
and D → R�↑� be the diagonal degree matrix of G, i.e., D[�,�] = �� .
Following the convention [6, 36], we assume that G is a self-looped
and connected graph. 

3.2 Di!usion Matrix and Length 
Di!usion Matrix. Numerous variants of Laplacian matrix are
widely adopted as di"usion matrix in existing GNN models [6, 21, 
22, 26, 38, 46]. Among them, the transition matrix P = D↗1A is
intuitive and easy-explained. Let 1 = �1 ↘ �2 ↘ . . . ↘ �� > ↗1
be the eigenvalues of P. During an in#nite di"usion, any initial
state �0 → R� of node set V converges to the stable state � , i.e.,

�� � = lim�≃⇐ �0P� where � (�) = 2� .
Di!usion Length. As stated, di"erent nodes reside at di"erent
local contexts in the graphs, and the corresponding receptive #elds 
for information aggregation di"er. Therefore, it is rational that each 
node � owns a unique length �� of di"usion steps. As desired, node
� aggregates informative signals from neighbors within the range 
of �� hops while obtaining limited marginal information out of the
range due to over-smoothing issues. To better quantify the e"ective 
vicinity, we #rst de#ne �-distance as follows. 

De!nition 3.1 (�-Distance). Given a positive constant � and a
graph G = (V, E) with di"usion matrix P, a length � is called
�-distance of node � → V if it satis#es that for every � → V , 
|P� [�,� ]↗� (� ) | ⇒ � .� (� ) 

According to De#nition 3.1, �� being �-distance of � ensures
that informative signals from neighbors are aggregated. On the 
other hand, to avoid over-smoothing, �� should not be too large. In
the following, we provide an appropriate setting of �� #tting both
criteria. 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Theorem 3.2. Given a positive constant � and a graph G = (V, E)� ⇑ � 
� �min�� with di"usion matrix P, �� := log� is �-distance of node 2� 

�, where � = max{�2, ↗�� } and �min = min{�� : � → V}.

Proof of Theorem 3.2. Let e� → R1↑� be a one-hot vector hav-
ing 1 in coordinate � → V and 1� → R1↑� be the 1-vector of size �.
Then, P� [�, �] = e� P� e⇓ 

� . Let P̃ = D1/2PD↗1/2 = D↗1/2AD↗1/2 and
⇓u be the corresponding eigenvector of its �-th eigenvalue (sorted� 

in descending order) of P̃ . For e� and e� , we decompose�� �� 
e� D↗1/2 =

�=1 
�� u� , and e� D1/2 =

�=1 
�� u� .

Note that {u⇓ 
1 , . . . , u� 

⇓} form the orthonormal basis and u1 = 1⇑� D1/2
.

2� 
⇓ ⇑1 ⇓ ⇑�� Thus, we have �1 = e� D↗1/2u = and �1 = e� D1/2u = .1 12� 2� 

Since P̃ is the similar matrix of P, they share the same eigenvalues.
Therefore, we have �! !��! !� !� !� �! �� 𝐿 1/2! →1/2 ↑
P𝐿 ˜ !

[ 𝐿 𝑀𝑁, 𝑀 𝐿 𝑀 !� !�e P𝐿e↑] → ( ) → 𝐿 (𝑀)!� �!e𝑀D P D e → ( )
𝑀 𝑁 !�

𝑁= =
𝐿 (𝑀) 𝐿 (𝑀) 𝐿 (𝑀)!�∑ !� !� !� ∑!� 𝑂 𝑂 𝐿 ∑

𝑃 𝑄 𝐿 𝑀 !� � 𝑂 𝑂 𝑄𝐿→ ( ) ! 𝑃 !� 𝑂 |𝑃 𝑃
= 𝑃=1 𝑃 𝑃 𝑃 =2 𝑃

= 𝑃 𝐿 𝑃 2 |𝑃𝑃𝑂= 𝑃↓ 𝑄 ·
𝐿 (𝑀) 𝐿 (𝑀) 𝐿 (𝑀)

1 2 1 2↔𝐿 e𝑀D→ / ↔↔e𝑁D / 𝐿↔ 2𝑅𝑄↓ 𝑄 · = ↗ ,
𝑆𝑁/2𝑅 𝑆𝑁𝑆𝑀

where the second inequality is by Cauchy–Schwarz inequality. ⇑ Fi-�  � 
nally, setting � �min�� := log �

� oof. 2� completes the pr !

For the �� de#ned in Theorem 3.2, it is �-distance of node � and
in the meantime involves the topological uniqueness of node �. 
Moreover, the performance can be further improved by tuning the 
hyperparameter � . 

3.3 Universal Di!usion Function 
As we know, the di"usion model de#ned by the symmetrically 
normalized Laplacian matrix L = I ↗ D↗1/2AD↗1/2 is derived from
Graph Heat Equation [9, 37], i.e.,

dH� = ↗LH� , and H0 = X, (1)
d� 

where H� is the node status of graph G at time � . By solving the
above di"erential function, we have 

⇐� 
H� = e↗�L = e↗� (I↗Ã ) = e↗�

� � Ã �
, (2)

� ! 
�=0 

where Ã = D↗1/2AD↗1/2. In this regard, the underlying di"usion
follows the Heat Kernel PageRank (HKPR) function as

� (�, �) = e↗� �
� 

(3)
� ! 

,

where � → Z+ is the parameter. However, � (�, �) is neither expres-
sive nor general enough to act as the universal di"usion function 
for real-world graphs, hinted by the following graph property. 

Proper() 3.1 ([9]). For graph G with average degree �G, we have
1 ↗ Δ� = � ( ⇑1 ) where Δ� is the spectral gap of G.

�G 
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(b) ogbn-products(a) Cora

Figure 1: Performance in the Cora (2.7k nodes) and ogbn-
products (2449k nodes). The x-axis is the training epoch. The
red line denotes the baseline performance for all nodes.

propagation (NP), which quanti!es the di"erence between the cur-
rent propagated node features and the theoretically over-smoothed
node features to enable custom propagation steps for each node.
NDM [32] introduces an extra power parameter to extend the graph
heat di"usion, separating the terminal time from the propagation
steps for each node. SCARA [42] further extends NP by the feature-
push operations, achieving attribute mining for each node. Despite
o"ering practical NP strategies, these methods rely on spectral
analysis and the generalized steady-state distribution of the !xed
propagation operator to customize the rigid NP strategy from a
global perspective. Therefore, these methods often yield high-bias
results due to over-reliance on the coarse propagation operator in
web-scale graphs with intricate topology. Meanwhile, node classi!-
cation on web-scale graphs heavily relies on the local node context
(LNC), which refers to a general characterization of nodes based on
their features, positions in the graph, and local topological structure.
Regrettably, existing methods ignore this crucial factor.

To further illustrate, we utilize the node degree to represent
the LNC, which directly in#uences the local connectivity of nodes.
Speci!cally, in Cora and ogbn-products, we classify nodes with
degrees less than or equal to 3 and 5 as Low-Deg and other nodes as
High-Deg, where Low-Deg at the graph’s periphery with fewer con-
nections and High-Deg located at the center of densely connected
communities. Subsequently, in Fig. 1, we use various propagation
operators combined with 3-layer SGC to evaluate the predictive
performance of nodes with di"erent LNC (i.e., node degrees) in
these two datasets. The related notations can be referred to Sec. 2.1.

Intuitively, di"erent propagation operators capture knowledge
based on nodes’ LNC from distinct perspectives during message
passing, resulting in the di"erent node representations for clas-
si!cation: (i) the symmetric normalization propagation operator
D̂→1/2ÂD̂→1/2 [38] considers both current node and neighbors’ LNC
to perform unbiased message passing; (ii) the random walk-based
propagation operator D̂→1Â [69] only considers current node LNC,
leading to a more inclusive knowledge acquisition from its neigh-
bors without additional normalization; (iii) the reverse random
walk-based operator ÂD̂→1 [62] only considers neighbors’ LNC, en-
hancing the capacity to discriminate between neighbors to achieve
!ne-grainedmessage aggregation. The following analysis illustrates
two key insights acquired through examining experimental results.

Key Insight 1: From the global perspective, we need to focus on
High-Deg in web-scale scenarios to mitigate the negative impacts
of high-bias propagation to ensure consistent performance. As de-
picted in Fig. 1, we observe that the Low-Deg performance remains
consistent (same trends in three operators) and stable (similar per-
formance to the red baseline) across two datasets. In contrast, the
inconsistent and unstable High-Deg performance has prompted us
to conduct a more in-depth analysis with di"erent graph scales.

Research on complex networks [16, 20] indicates that the topol-
ogy of large-scale graphs is highly intricate, which results in the
emergence of densely connected communities with indiscernible
High-Deg. Consequently, ogbn-products possesses more intricate
and ambiguous LNC, misleading High-Deg during graph propaga-
tion. This explains why considering the LNC of neighbors through
ÂD̂→1 can yield better High-Deg performance but worse than base-
line. In contrast, the topology of small-scale Cora is relatively
straightforward, enabling High-Deg to outperform the baseline by
aggregating more favorable messages. This explains why the propa-
gation operator D̂→1/2ÂD̂→1/2 is bene!cial for predicting High-Deg,
where both current node and its neighbors hold equal signi!cance.

Key Insight 2: From the local perspective, leveraging appropriate
propagation operators across di!erent scenarios to e!ectively capture
relevant LNC can improve node predictive performance. After analyz-
ing High-Deg in graphs of di"erent scales, we conduct a thorough
examination of the roles played by di"erent propagation operators
in consistent performance trends observed for Low-Deg. As de-
picted in small-scale Cora, the success of D̂→1Â in Low-Deg stems
from its enhanced focus on aggregating neighbor features, which
breaks potential feature sparsity issues caused by fewer neighbors.
In contrast, D̂→1/2ÂD̂→1/2 and ÂD̂→1 apply progressively enhanced
normalization to propagated messages based on neighbors’ LNC,
thereby constraining the aggregation of knowledge from Low-Deg
neighbors. This is also applicable to large-scale scenarios in Fig. 1(b).

Motivated by the above key insights, in this paper, we propose
Adaptive Topology-aware Propagation (ATP), which o"ers a plug-
and-play solution for existing GNNs. Speci!cally, ATP !rst iden-
ti!es potential high-bias propagation through graph propagation
analysis and then employs a masking mechanism to regularize the
node-wise propagation mechanisms (motivated by Key Insight 1).
After that, ATP employs a general encoding approach to represent
node-dependent LNC without learning, which is then used to tailor
propagation rules for each node (motivated by Key Insight 2).

Our contributions. (1)New Perspective.To the best of our knowl-
edge, this work is the !rst to address the adverse impact of intri-
cate topology in web-scale graph mining applications on the semi-
supervised node classi!cation paradigm, providing valuable em-
pirical analysis. (2) New Method.We propose ATP, a user-friendly
and #exible NP optimization strategy tailored for most scalable
GNNs, which is orthogonal to the existing optimization methods.
(3) SOTA Performance.We conduct experiments on prevalent scal-
able GNNs and 12 benchmark datasets including the representative
large-scale ogbn-papers100M. Empirical results demonstrate that
ATP has a signi!cant positive impact on existing scalable GNNs (up
to 4.96% higher). Furthermore, when combined with existing NP op-
timization strategies, it exhibits a complementary e"ect, resulting
in additional performance gains.

Conventional Graph Propagation

Rethinking Node-wise Propagation for Large-scale Graph Learning WWW ’24, May 13–17, 2024, Singapore, Singapore.

2 PRELIMINARIES
2.1 Problem Formulation
Consider a graph G = (V, E) with |V| = 𝐿 nodes and |E | = 𝑀
edges, the adjacency matrix (including self-loops) is Â → R𝐿↑𝐿 , the
feature matrix is X = {𝑁1, . . . , 𝑁𝐿} in which 𝑁𝑀 → R𝑁 represents
the feature vector of node 𝑂 , and 𝑃 represents the dimension of the
node attributes. Besides, Y = {𝑄1, . . . ,𝑄𝐿} is the label matrix, where
𝑄𝑀 → R |Y | is a one-hot vector and |Y| represents the number of
the classes. The semi-supervised node classi!cation task is based
on the topology of labeled set V𝑂 and unlabeled set V𝑃 , and the
nodes inV𝑃 are predicted with the model supervised byV𝑂 .

2.2 Scalable Graph Neural Networks
Motivated by the spectral graph theory and deep neural networks,
GCN [38] simpli!es the topology-based convolution operator [4]
by the !rst-order approximation of Chebyshev polynomials [37].
The forward propagation of the 𝑅-th layer in GCN is formulated as

X(𝑄 ) = 𝑆 (ÃX(𝑄↓1)W(𝑄 ) ), Ã = D̂↓1/2ÂD̂↓1/2, (1)

where D̂ represents the degree matrix of Â, W represents the train-
able weights, and 𝑆 (·) represents the non-linear activation function.
Intuitively, GCN aggregates the neighbors’ representation. Such a
simple paradigm is proved to be e"ective in various graph-based
downstream tasks [25, 35, 66]. However, GCN su"ers from severe
scalability issues since it executes the feature propagation and
transformation recursively and is trained in a full-batch manner.
To avoid the recursive neighborhood over expansion, sampling and
decouple-based approaches have been investigated.

Sampling-basedmethods.Regarding node-level sampling tech-
niques, GraphSAGE [28] employs random selection to extract a
!xed-size set of neighbors for computation. VR-GCN [13] delves
into node variance reduction, achieving size reduction in samples
at the expense of additional memory usage. For layer-level sam-
pling, FastGCN [12] proposes importance-based neighbor selec-
tion to minimize sampling variance. AS-GCN [33] introduces an
adaptive layer-level sampling method for explicit variance reduc-
tion. Similarly, LADIES [79] adheres to layer constraints, crafting a
neighbor-dependent and importance-based sampling approach. As
for the graph-level sampling strategies, Cluster-GCN [17] initially
clusters nodes before extracting nodes from clusters, while Graph-
SAINT [69] directly samples subgraphs for mini-batch training.
GraphCoarsening [34] creates a coarse-grained graph for training.
ShaDow [68] !rst extracts a local subgraph for target entities and
employs GNN of arbitrary depth on the subgraph.

Decouple-based methods. Recent studies [71] have observed
that non-linear feature transformation contributes little to perfor-
mance as compared to graph propagation. Thus, a new direction
for scalable GNN is based on the SGC [59], which reduces GNNs
into a linear model operating on 𝑇-layer propagated features

X(𝑅 ) = Ã𝑅X(0) , Y = so!max
(
WX(𝑅 )

)
, (2)

where X(0) = X and X(𝑅 ) is the 𝑇-layer propagated features. As
the propagated features X(𝑅 ) can be precomputed, SGC is easy to
scale to large graphs. Inspired by it, SIGN [26] proposes to con-
catenate the learnable propagated features

[
X(0)W0, . . . ,X(𝑅 )W𝑅

]
.

S2GC [78] proposes to average the propagated results from the per-
spective of spectral analysis X(𝑅 ) =

∑𝑅
𝑄=0 Ã

𝑄X(0) . GBP [14] utilizes
the 𝑈 weighted manner X(𝑅 ) =

∑𝑅
𝑄=0𝑉𝑄 Ã𝑄X(0) ,𝑉𝑄 = 𝑈 (1 ↓ 𝑈)𝑄 .

GAMLP [73] achieves information aggregation based on the atten-
tion mechanisms X(𝑅 ) = Ã𝑅X(0) ↔∑𝑅↓1

𝑄=0 𝑉𝑄X(𝑄 ) , where attention
weight 𝑉𝑄 has multiple calculation versions. GRAND+ [24] pro-
poses a generalized forward push propagation algorithm to obtain
P̃, which is used to approximate 𝑇-order PageRank weighted Ãwith
higher #exibility and e$ciency. Then it obtains propagated results
X̃ = P̃WX(0) with P̃-based data augmentation and learnableW.

Node-wise Propagation Optimization Strategies. Despite
the aforementioned scalable GNNs utilizing computation-friendly
message aggregators or decoupling paradigms to extend learnable
architectures to web-scale graphs, the majority of existing meth-
ods still adhere to !xed propagation rules. This approach, which
does not discriminate between nodes, inadvertently overlooks the
uniqueness of each node within the propagation. Hence, recent
studies have introduced !ne-grained 𝑇-step NP optimization strate-
gies to improve the predictive performance of scalable GNNs. The
optimization paradigm can be formally expressed as

X̃ =
𝑅∑
𝑄=0

! · L · H · X [row, col] , ! =
𝑄∑

𝑆=0
𝑉𝑆 ·

(
D̂𝑇↓1ÂD̂↓𝑇

)𝑆
,

L = Diag {I [𝑅𝑈 ] : ↗𝑊 → V} , 𝑇 = max {𝑅𝑈 ,↗𝑊 → V} ,

H =
𝑋𝑄

(𝑅 !)𝑉 ·𝑌 , 𝑌 =
↘∑
𝑄=0

𝑋𝑄

(𝑅 !)𝑉 ≃ 𝑍↓𝑊
𝑋𝑄

𝑅 !
⇐ 𝑍↓𝑋

↘∑
𝑆=0

𝑎𝑆

𝑏!
,

(3)

where propagated feature X̃ is obtained by the various NP optimiza-
tion perspectives (i.e., L,H,!, andX [row, col]). In other words, the
NP optimization perspectives are diverse. NDLS [72] and NDM [32]
customize node-wise propagation step, where 𝑅𝑈 represents the
propagation step for node 𝑊, while L denotes the diagonal matrix
composed of indicator vectors I, used to compute the appropriate
propagation results, i.e., I [𝑅𝑈 ] = 1 if 𝑅 ⇒ 𝑅𝑈 ⇒ 𝑇 and I [𝑅𝑈 ] = 0 oth-
erwise. As we know, by solving the di"erential function of Graph
Heat Equation H at time 𝑎 de!ned by [18], GDC [27] and DGC [57]
obtain the underlying Heat Kernel PageRank parameterized by 𝑋
for !ne-grained NP optimization. Notably, we focus solely on de-
scribing the heat kernel function used for propagation, omitting the
node features X. Additionally, for the sake of reader-friendliness,
we present H and ! in a decoupled manner. Building upon this,
NDM introduces normalization factor 𝑌 and power parameter 𝑐 to
improve its expressiveness and generalizability, which can control
change tendency for general purposes. Furthermore, SCARA [42]
achieves the discovery of potential correlations between nodes by
performing !ne-grained feature-push operations, transforming the
computation entities from X [row, :] to X [:, col].

Despite their e"ectiveness, essential propagation rules are ig-
nored. Speci!cally, ! is the uni!ed graph propagation equation,
which serves as an e"ective paradigm to model various node prox-
imity measures and basic GNN propagation formulas (i.e., ÃW(𝑄 )

in GCN and Ã𝑄 in SGC). For a given node 𝑊, a node proximity query
yields !(𝑂) that represents the importance of 𝑂 with respect to 𝑊.
It captures intricate structural insights from the 𝑅-hop neighbors,
which is guided by weight sequence𝑉𝑆 and probabilities obtained

• Unified normalization for all nodes

• High-degree nodes produce 
biased accuracy

High-degree
high bias

Low-degree
low bias
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Algorithm 1 Adaptive Topology-aware Propagation
Input: Graph G, mask ratio𝐿 , threshold 𝑀 , hyperparameters𝑁, 𝑂 ;
Output: Node-wise propagation operator ω̃
1: Select an appropriate 𝑀 by the truncation of 𝑂-based inequality

| |�̃� → 𝑃𝐿 (𝑄) | |2 ↑ 𝑂 or handcraft manner;
2: Correct the high-bias propagation by Eq. (7);
3: Calculate the centrality-based LNC by Eq. (8) and Eq. (9)
4: Calculate the connectivity-based LNC encoding by Eq. (10);
5: Get node-wise propagation kernel coe!cients by Eq. (11);
6: Obtain ATP propagation equation by Eq. (11);

struggled trade-o" between e"ective convergence diameters and
over-smoothing. To break these limitations, formally, we sample
a subset of nodes Ṽ ↓ V and mask a certain percentage of their
one-hop connections with a mask token [MASK], i.e., topology
indicator vector I[𝑀 ] ↔ R𝑁 with 𝑀 -based node selection threshold.
Thus, the corrected topology [A𝑂 ] of node 𝑅 can be de#ned as:

[A𝑂 ] =
{
I[𝑀 ] ↗ A𝑂 𝑅 ↔ Ṽ
A𝑂 𝑅 ω Ṽ

. (7)

Furthermore, from a feature-oriented perspective, unlike high-
resolution images and rich texts in CV and NLP, graph learning
often involves sparsely informative node features (e.g., one-hot
vectors). In large-scale graphs, disrupted homophily assumptions
of High-Deg caused by intricate topology lead to the connected
neighbors diverging from the current node. Consequently, High-
Deg struggle to maintain their uniqueness during heterophilous
message aggregation. Fortunately, Eq. (7) enhances the robustness
of High-Deg by regularizing the connection of misleading messages.

3.2 Weight-free LNC Encoding
Based on the Sec. 1, we highlight the in$uence of LNC on predic-
tions. A natural solution is position encoding [9, 22, 40], which
helps GNNs additionally incorporate node positions. However,
such segregated encoding method could inadvertently lead to mis-
aligned learning objectives (i.e., positions and classi#cations), im-
pacting the expressive capacity of GNNs. Although graph transform-
ers [8, 36, 43] can mitigate this, they introduce extra computational
costs, particularly dealing with web-scale graphs. Further analysis
can be found in Sec. 4.2 and Appendix A.4-A.5.

Motivated by the Fig. 1, di"erent operators, guided by the propa-
gation kernel coe!cient 𝑆 , capture LNC from di"erent perspectives.
Speci#cally, Low-Deg requires smaller 𝑆 to avoid unnecessary nor-
malization during aggregation, acquiring more knowledge from
neighbors. High-Deg bene#t from relatively larger 𝑆 , enhancing
their capacity to discern neighbors. Building upon these insights, we
propose weight-free LNC encoding, which employs centrality and
connectivity measures to encode node positions and local topological
structure in a weight-free manner. Remarkably, this strategy seam-
lessly integrates into feature-oriented graph propagation equations
and coexists harmoniously with existing NP optimization strategies.
Given an undirected graph, the general node-adaptive propagation
kernel coe!cients can be formulated as diagonal R =

∑𝑃
𝑄=1 𝑇𝑄P

𝑄R0,
where P is the iteration matrix and R0 is the initial coe!cients. We
use 𝑈 = 1 and high-bias propagation optimized P = [D] by default.

Centrality-based Position Encoding. In our implementation,
we employ degree and eigenvector centrality for encoding node
positions in the graph. In terms of degree-based position encoding,
nodes at the center of the network (i.e., High-Deg) indicate higher
in$uence during propagation corresponding to larger 𝑆 , where 𝑆 is
the optimized propagation kernel coe!cient 𝑆 .

Degree
(
𝑇1 = 1,R0 = Diag

(
1

𝑉 → 1
, . . . ,

1
𝑉 → 1

))
:=

R𝑅𝑆 = 𝑇1 · [D] · R0 = Diag
( [𝑊]1
𝑉 → 1

, . . . ,
[𝑊]𝑁
𝑉 → 1

)
.

(8)

For eigenvector-based position encoding, a node’s centrality de-
pends on its neighbors, which presents a unique spectral node po-
sitions in the topology. This implies that High-Deg within densely
connected communities possess higher in$uence, yielding larger 𝑆 .

Eigenvector (𝑇1 = 1/𝑋max, P = [A] ,R0 = (u11, . . . , u1𝑁)) :=

R𝑇𝑈 = Diag (𝑇1 · [A] ·R0)=Diag
(

1
𝑋max

· [A] · (u11, . . . , u1𝑁)
)
,
(9)

where the vector R0 is the eigenvector corresponding to the largest
eigenvalue 𝑋max of the optimized adjacency matrix [A]. Based on
the R𝑇𝑈 , High-Deg pulls 𝑆 → 1 closer to 0 to discern neighbors for
message aggregation, while Low-Deg pushes 𝑆 → 1 towards -1 to
acquire more neighbor knowledge. According to D̂𝑉→1ÂD̂→𝑉 from
Eq.(3), these trends satisfy the observations outlined in Sec.1.

As widely recognized, e!ciently performing accurate eigende-
composition on web-scale graphs remains an open problem. How-
ever, we have opted to include R𝑇𝑈 as a component in our position
encoding strategy. This choice stems from the fact that eigenvec-
tors serve as spectral representations of nodes within the topology,
o"ering a precise depiction of a node’s position. Furthermore, we
can leverage numerical linear algebra techniques to rapidly approx-
imate solutions with error guaranteed [46, 49, 51]. Hence, under
a"ordable computational overhead, we propose to utilize both R𝑅𝑆
and R𝑇𝑈 to further improve performance. Alternatively, if compu-
tational constraints arise, selecting solely degree-based position
encoding remains a viable option. We further discuss this in Sec. 4.

Connectivity-based Local Topological Structure Encoding.
After that, ATP represents the local topological structure of each
node in the graph, which closely intertwines with the connectivity
of their neighbors and determines the unique propagation rules.
In other words, this reveals the localized connectivity patterns,
where stronger connectivity corresponds to larger 𝑆 , implying more
consideration of the intricate neighbors, and vice versa. For instance,
in social networks, nodes often form cohesive groups characterized
by a notably dense interconnection of ties. This tendency is usually
higher than the average probability of a random node pair [29, 58].
Therefore, we utilize local cluster connectivity with 𝑇1 = I(N) to
encode this local topological structure for each node in the graph,

Cluster
(
R0 = Diag

(
1

[𝑊]1 ( [𝑊]1 → 1) , . . . ,
1

[𝑊]𝑁 ( [𝑊]𝑁 → 1)

))
:=

R𝑊𝑂 = 𝑇1 · [D] · R0 = Diag
( [𝑊]1 · I(N1)
[𝑊]1 ( [𝑊]1 → 1) , . . . ,

[𝑊]𝑁 · I(N𝑁)
[𝑊]𝑁 ( [𝑊]𝑁 → 1)

)
,

(10)
where N𝐿 denotes the one-hop neighbors of 𝑌 and indicator vectors
I (N𝐿 ) is used to compute the neighborhood connectivity of 𝑌 , i.e.,
I (N𝐿 ) = 2

%%𝑍 𝑋𝑄 %% if 𝑎 𝑋 , 𝑎𝑄 ↔ N𝐿 , 𝑍 𝑋𝑄 ↔ E and I (N𝐿 ) = 0 otherwise.
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Node-adaptive Propagation Kernel. After that, we obtain the
optimized propagation kernel coe!cient, which is denoted as a
diagonal matrix R̃ → R𝐿↑𝐿 . Building upon this, the formal represen-
tation of node-wise propagation equation !̃ through weight-free
LNC encoding combined with Eq. (3) is as follows

R̃ = 𝐿 ·
(
R𝑀𝑁 + R𝑂𝑃 + R𝑄𝑅

)
,

!̃ =
𝑆∑

𝑇=0
𝑀𝑇 ·

( [
D̂
] R̃↓1 [Â] [D̂]↓R̃

)𝑇
,

(11)

where 𝐿 is the normalization factor,
[
Â
]
is the topology with self-

loop after high-bias propagation correction, and
[
D̂
]
is the cor-

responding degree matrix. Remarkably, !̃ can be seamlessly inte-
grated into any GNN dependent on graph propagation equations
(e.g., message-passing mechanisms) while maintaining orthogo-
nality with existing NP strategies (independent of L, H, and X).
Furthermore, due to ATP directly optimizing the !̃, its positive im-
pact on decouple-based scalable GNNs is particularly pronounced.

4 EXPERIMENTS
In this section, we "rst introduce experimental setups, including
datasets, baselines, and environments. Due to space constraints, we
provide additional experimental details and evaluation discussion
in the Appendix [41]. We aim to answer the following questions to
verify the e#ectiveness of our proposed ATP: Q1: How does ATP
perform in improving backbones? Meanwhile, can ATP coexist har-
moniously with existing NP optimization strategies? Q2: If ATP is
e#ective, what contributes to its performance gain for backbones?
Q3: If we insert ATP into the backbone, how does it a#ect the run-
ning e!ciency? Q4: Compared to other NP optimization strategies,
how does ATP perform when applied to sparse web-scale graphs?

4.1 Experimental Setup
Datasets.We evaluate the performance of ATP under both trans-
ductive and inductive settings. Due to space constraints, the statis-
tics and description details are summarized in Appendix A.1.
Baselines. We conduct experiments using the following back-
bone GNNs: (i) Representative full-batch GNNs: GCN, GAT, GC-
NII, GATv2. (ii) Sampling-based GNNs: GraphSAGE, Cluster-GCN,
GraphSAINT, ShaDow. (iii) Decouple-based GNNs: SGC, APPNP,
PPRGo, GBP, SIGN, S2GC, AGP, GAMLP, GRAND+. Based on this,
we compare ATPwith existing NP optimization strategies, including
DGC, NDLS, NDM, and SCARA. To alleviate the randomness and
ensure a fair comparison, we repeat each experiment 10 times for
unbiased performance. Unless otherwise stated, we adopt GAMLP
as the backbone and eigenvector-based LNC.
Hyperparameter Settings. The hyperparameters in the backbone
GNNs and NP optimization strategies are set according to the orig-
inal paper if available. Otherwise, we perform a hyperparameter
search via the Optuna [1]. For our proposed ATP, we explore the
optimized 𝑁 for masking mechanisms in a handcrafted manner,
which contains the selection ratios in all degree-ranked connected
densely nodes (Top-1%-20%) and the sampling ratio range for other
relatively sparse nodes is 0-0.5. The mask token [𝑂] and the nor-
malization factor 𝐿 are explored within the ranges of 0 to 1.

4.2 Performance Comparison
Backbone Improvement. To answer Q1, we present ATP’s opti-
mization results for backbones in Tables 1 and 2. The highlighted
improvements demonstrate the impressive performance of ATP as
a plug-and-play NP optimization strategy. Building upon this, we
observe that ATP’s performance improvement is more pronounced
in large-scale graphs compared to small-scale graphs. This is at-
tributed to the fact that in large-scale graphs, ATP’s propagation
correction strategy masks more potential high-bias edges, and LNC
encoding allows for "ner-grained exploration of intricate topology.
Compared to Weighted Aggregation. In Table 1, GraphSAGE,
GAT, and GATv2 adopt well-known attention mechanisms for
weighted message aggregation (marked with *). This node-pairs
attention strategy is an additional alternative solution to the graph
propagation equation (i.e., ω in Eq. (3)), making ATP cannot co-
exist with this learnable aggregation strategy. It’s worth noting
that although these attention-based approaches intuitively have the
potential for better predictive performance, their limited receptive
"elds due to "rst-order aggregation and the modeling complexity
imposed by intricate topologies often restrict their competitive per-
formance and scalability when dealing with web-scale graphs (i.e.,
out-of-memory (OOM) error). Further detailed discussions about
attention methods and ATP can be found in Appendix A.4-A.5.
Compared to Existing NP Optimization Strategies. To answer
Q1 from the perspective of generalizability, we provide perfor-
mance gains brought by di#erent NP optimization strategies for
backbones in Table 3 under both transductive and inductive settings.
We observe that ATP consistently produces competitive results in
the context of large-scale graph learning, thereby validating the
claims made in Sec. 1 that integrating high-bias propagation correc-
tion and LNC encoding can improve the comprehension of intricate
topologies. Meanwhile, SIGN𝐿 and S2GC𝐿 represent the best results
of integrating ATP with SCARA and NDM optimization strategies
by Eq. (3). We observe impressive results in their combination,
validating that ATP coexists harmoniously with existing methods.

4.3 Ablation Study and In-depth Analysis
To answer Q2, we investigate the contributions of high-bias prop-
agation correction (HPC), LNC encoding (LNC), and eigenvector-
based LNC (Eigen) to ATP, which is shown in Table. 4.

High-bias Propagation Correction. For HPC, it is applied to
reduce potential high-bias propagation through masking mecha-
nisms. Its primary goal is to improve running e!ciency, re$ected in
performance gains and reduced computational costs (see Sec. 3.1).
Therefore, HPC not only achieves an average improvement of 0.48%
but also o#ers a solution for enhancing model scalability. For in-
stance, in Table 1, HPC makes Cluster-GCN and GraphSAINT train-
able on ogbn-papers100M. More details can be found in Sec. 4.4.

Building upon this, we further analyze HPC by the selection
ratio of High-Deg for masking in Fig. 2. The experimental results
indicate that as the masking rate increases from Top-1%, there is a
consistent improvement in performance. In most cases, we suggest
that select nodes with degrees in the Top-10%-15% of the degree
ranking (from high to low) for masking. Excessive masking nodes
may have a negative impact on predictions due to broken topology.
More details can be found in Appendix A.6.

Smaller bias
& Improved acc

Normalized 
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from a 𝐿-step propagation that originates from a source node 𝑀
and extends to every node within the graph. More deeply, the
propagation kernel coe!cient 𝑁 → [0, 1] not only a"ects transport
probabilities during the propagation for modeling node proximity
but also captures pivotal LNC knowledge detailed in Sec. 1 (three
propagation operators obtained by setting 𝑁 = 0, 𝑁 = 1/2, 𝑁 = 1).

3 ATP FRAMEWORK
As a plug-and-play node-wise propagation optimization strategy,
the computation of ATP is independent of the graph learning and
remains orthogonal to existing NP methods. It commences by em-
ploying a masking mechanism for correcting potential high-bias
propagation from a global perspective. Then, ATP represents the
LNC to custom propagation rules for each node in a weight-free
manner from a local perspective. Based on this, ATP serves to curtail
redundant computations and provides performance gains by high-
bias propagation correction and LNC encoding for existing scalable
GNNs. The complete algorithm can be referred to as Algorithm 1.

3.1 High-bias Propagation Correction
Propagation Operator. For existing GNNs, numerous variations
of the Laplacian matrix have been widely employed as propagation
operators, where P = D̂↑1Â stands out due to its intuitive and ex-
plainable nature. Let 1 = 𝑂1 ↓ 𝑂2 ↓ . . . ↓ 𝑂𝐿 > ↑1 be the eigenval-
ues of P. Suppose the graph is connected, for any initial distribution
𝑃0, let �̃� (𝑃0) = lim𝑀↔↗ 𝑃0P𝑀 , where �̃� (𝑃0) represents the stable
state under in#nite propagation. Then according to [21], we have
�̃�𝑁 = �̃� (𝑃0)𝑁 = 1

𝐿
∑𝐿

𝑂=1 P𝑂𝑁 , where �̃�𝑁 is the 𝑄-th component. If P is
not connected, we can divide P into connected blocks. Then for each
blocks 𝑅𝑃 , there always be �̃� (𝑃0)𝑁 = 1

𝐿𝐿

∑
𝑂→𝑄𝐿

P𝑂𝑁 ·
∑

𝑂→𝑄𝐿
(𝑃0) 𝑂 ,

where𝑆𝑃 is the number of nodes in𝑅𝑃 . Tomake the following deriva-
tion more reader-friendly, we assume P is connected. Therefore, �̃�
is independent to 𝑃0, thus we replace �̃� (𝑃0) by �̃� . To investigate
the #ne-grained graph propagation, we have the following lemmas

L!""# 1. The di!erence between the stable state and 𝑇-step prop-
agated results represents the upper bound of the convergence rate.

""""
(
P𝑀𝑈𝑁

)
𝑂
↑ �̃� 𝑂

"""" ↘
√
𝑉 𝑂

𝑉𝑁
𝑂𝑀2 , (4)

where𝑉 denotes the degree of node plus 1 (to include itself by self-loop).

L!""# 2. For a graph G = (V, E) with the average degree 𝑉G ,

we have 1 ↑ ω𝑅 = 𝑊
(
1/
√
𝑉G

)
, where ω𝑅 is the spectral gap of G.

Global Graph Propagation. Fundamentally, the core of graph
propagation is the trade-o" between the node-wise optimal con-
vergence diameters and over-smoothing. This optimal convergence
diameter indicates the receptive #eld required for generating the
most e"ective node representations, whereas exceeding this range
would lead to negative impacts due to over-smoothing. While some
methods propose node-adaptive 𝑇 for aggregating valuable informa-
tionwithin𝑇-hop neighbors, there are other pivotal factors that play
signi#cant roles in achieving convergence. Therefore, we adopt 𝑇-
step propagation for all nodes and analyze the varying propagation
states from a global perspective to obtain the Theorem 1.

T$!%&!" 1. The upper bound on the convergence rate of 𝑇-step
graph propagation hinges on quantifying the discrepancy between
the current state and the stable state, which is de"ned as

| |�̃� ↑ 𝑃𝑁 (𝑇) | |2 ↘
√

2𝑋 + 𝑆
𝑉𝑁

𝑂𝑀2 , (5)

where the pivotal factors in striking a balance between e!ective con-
vergence and over-smoothing are the High-Deg in large-scale graphs.

P&%%’. To consider the impact of each node on the others sep-
arately, let 𝑃0 = 𝑈𝑁 , where 𝑈𝑁 is a one-hot vector with the 𝑄-th
component equal to 1. According to [19], we have Lemma 1.

Eq. (4) shows (P𝑀𝑈𝑁 ) 𝑂 symbols the 𝑌-th component of P𝑀𝑈𝑁 , where
the 𝑇-step propagation started from node 𝑄 . We denote P𝑀𝑈𝑁 as 𝑃𝑁 (𝑇),
then have the following total convergence rate variations of node 𝑄

| |�̃� ↑ 𝑃𝑁 (𝑇) | |22 =
𝐿∑
𝑂=1

(
�̃� 𝑂 ↑ 𝑃𝑁 (𝑇) 𝑂

)2
↘

∑𝐿
𝑂=1 𝑉 𝑂

𝑉𝑁
𝑂2𝑀2

| |�̃� ↑ 𝑃𝑁 (𝑇) | |2 ↘
√

2𝑋 + 𝑆
𝑉𝑁

𝑂2𝑀2 =

√
2𝑋 + 𝑆
𝑉𝑁

𝑂𝑀2 ,

(6)

where𝑋 and 𝑆 represent the number of edges and nodes. The
above inequality indicates that the factors in$uencing the conver-
gence rate of propagation include the degree of the current node 𝑄
denoted as 𝑉𝑁 , the second largest eigenvalue 𝑂 determined by the
propagation operator, and the number of propagation step 𝑇 .

In addition to 𝑇 , the #rst in$uencing factor 𝑉𝑁 is determined by
the degree of the current node 𝑄 . Since 𝑉𝑁 ↓ 1 (with self-loop), it
has minimal in$uence on the upper bound of the convergence rate
for Low-Deg. In contrast, 𝑉𝑁 is directly associated with the densely
connected communities (i.e., High-Deg). This explains the greater
stability of the Low-Deg shown in Fig. 1 compared to the High-Deg.
Then, we delve into an in-depth analysis of 𝑂2, narrowing our focus
to the large-scale graphs. According to [19], we have Lemma 2.

The spectral gap ω𝑅 denotes the di"erence between the magni-
tudes of the two largest eigenvalues of the propagation operator P,
where 𝑂1 = 1. Therefore, the sparse graphs (i.e., small-scale Cora)
with a small value of 𝑉G result in a relatively large value of 𝑂2,
indicating a faster convergence rate. Contrastingly, dense graphs
(i.e., large-scale ogbn-products) with a large value of 𝑉G yield a
smaller value of 𝑂2, presenting a unique convergence challenge.
Building upon this, we have determined that the key to achieving a
delicate equilibrium between e!cient convergence and mitigating
over-smoothing resides within the High-Deg in large-scale graphs.

↭

To improve convergence e!ciency in large-scale scenarios, we
can tackle the problem from two perspectives (excluding 𝑇): (i) de-
creasing 𝑉𝑁 and (ii) amplifying 𝑂2. Fortunately, we found that by
appropriately reducing the degrees of High-Deg—thereby eliminat-
ing redundant connections—we can achieve both goals concurrently
while reducing the computational costs of existing scalable GNNs.
Masking for Correction. From a structure-aware perspective,
we analyze the global graph propagation through Theorem 1 and
#nd that encoding deep graph structural information of High-Deg
within large-scale graphs presents di!culties, which leads to a

Propagation
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GNN Graph Smoothing: Spectral Approximation:

After obtaining embedding 𝜴(𝐿 ) for the current layer, feature
transformation is performed by multiplying the weight matrix. We
similarly rewrite Eq. (1) with respect to each column 𝐿 , i.e., the 𝐿-th
feature dimension of the representation matrix:

𝜴 (𝐿+1) [:, 𝑀 ] = 𝑁
( 𝑀∑
𝑁=1

𝜶 (𝐿 ) [ 𝑂, 𝑀 ]
)
= 𝑁

( 𝑀∑
𝑁=1

𝜷(𝐿 ) [ 𝑂, 𝑀 ] · 𝜸(𝐿 ) [:, 𝑂 ]
)
, (11)

where 𝜶 (𝐿+1) [:, 𝐿] denotes the 𝐿-th column vector of all nodes in
𝜶 (𝐿+1) , and the weight entry𝜷(𝐿 ) [ 𝑀, 𝐿] symbolizes the neuron map-
ping the 𝑀-th embedding feature to the 𝐿-th representation feature.
U!"#$%& sparsi!cation on the weight matrix can thus be presented
in the entry-wise manner following weight threshold 𝑁𝑃 :

�̂� [ 𝑀, 𝐿] = thr𝑄 →𝑂
(
𝜷 [ 𝑀, 𝐿]

)
·𝜷 [ 𝑀, 𝐿], 𝑁 →𝑃 = 𝑁𝑃/↑𝜴 [:, 𝑀]↑ . (12)

Given the shapes of matrices 𝜴 ,𝜶 ↓ R𝑅↔𝑆 and𝜷 ↓ R𝑆 ↔𝑆 , let
the pruning ratio of weight matrix be 𝑂𝑃 . The sparsi!cation scheme
at least reduces complexity to𝑃

(
(1↗𝑂𝑃)𝑄𝑅 2

)
. The favorable merit

of joint graph and weight sparsi!cation by U!"#$%& is that, both
the propagation result 𝜴 and the weight multiplication product
𝜶 enjoy sparsity from the previous input alternatively. In fact, as
proven by [61], the scale of reduced computational operation can
be advanced to be quadratic in (1 ↗ 𝑂𝑃).

5 THEORETICAL ANALYSIS
In order to characterize U!"#$%& for GNN learning, we !rstly
introduce a dedicated graph sparsi!er for the approximate graph
smoothing problem in Section 5.1. We subsequently examine the
graph sparsi!cation for decoupled GNN and the joint sparsi!cation
for iterative GNN in Sections 5.2 and 5.3, respectively. The insights
derived from our following analysis are summarized as below:
• U!"#$%& can be described as a graph spectral sparsi!er on
both decoupled and iterative GNN architectures. Its sparsi!cation
strength is determined by the threshold of entry removal.
• When applied across multiple GNN layers, U!"#$%& provides an
e"ective approximation to the graph smoothing optimization. Its
output representation is close to the original objective.

Algorithm 2: U!"#$%& on Iterative GNN

Input: Graph G = ↘V, E≃, di"usion 𝜸(𝐿 ) , attribute 𝜹 , network
layer 𝑆, graph and weight sparsi!cation thresholds 𝑁𝑇, 𝑁𝑃

Output: Approximate representation �̂� (𝑈)
1 �̂� (0) ⇐ 𝜹 , Ê(↗1) ⇐ E
2 for 𝑇 = 0 to 𝑆 ↗ 1 do
3 �̂� (𝐿+1) ⇐ 0, 𝜴(𝐿 ) ⇐ �̂� (𝐿 )
4 Acquire sparsi!ed 𝜴(𝐿 ) , Ê(𝐿 ) , �̂�(𝐿 ) as in Algorithm 1
5 for 𝐿 ⇐ 1 to 𝑅 do
6 for 𝑀 ⇐ 1 to 𝑅 and �̂�(𝐿 ) [ 𝑀, 𝐿] ω 0 do
7 if |�̂�(𝐿 ) [ 𝑀, 𝐿] | > 𝑁𝑃/↑𝜴(𝐿 ) [:, 𝑀]↑ then
8 �̂� (𝐿+1) [:, 𝐿] ⇐ �̂� (𝐿+1) [:, 𝐿] + �̂�(𝐿 ) [ 𝑀, 𝐿] · 𝜴(𝐿 ) [ 𝑀]
9 else

10 �̂�(𝐿 ) [ 𝑀, 𝐿] ⇐ 0
11 �̂� (𝐿+1) ⇐ 𝑈

(
�̂� (𝐿+1)

)
12 return �̂� (𝑈)

• U!"#$%& o"ers inherent advantages in terms of GNN e#cacy
and e#ciency, notably mitigating the over-smoothing issue and
facilitating enhanced joint sparsity.

5.1 Approximation by Graph Sparsi!cation
Graph sparsi!cation methods such as edge removal apply modi!ca-
tions to the graph structure. We hereby look into a measure capable
of quantitatively assessing the extent of graph changes induced by
these sparsi!ers. For this purpose, we introduce a variant of spectral
similarity in light of its relevance to the overall GNN optimization
goal. Consequently, our analysis highlights the impact of graph
sparsi!er throughout the learning process, rather than approxi-
mating speci!c feature values as in previous GNN sparsi!cation
theories [47, 61].

De!nition 5.1 (𝑉-Spectral Similarity). The matrix �̂� is said to
be 𝑉-spectrally similar to the matrix 𝝐 if:

𝜻⇒ (�̂� ↗ 𝑉𝜼 )𝜻 ⇑ 𝜻⇒𝝐𝜻 ⇑ 𝜻⇒ (�̂� + 𝑉𝜼 )𝜻, ⇓𝜻 ↓ R𝑅, (13)
or, equivalently:&&𝜻⇒ (𝝐 ↗ �̂�)𝜻

&& ⇑ 𝑉 · ↑𝜻 ↑2, ⇓𝜻 ↓ R𝑅 . (14)
Spectral sparsi!cation [2, 44] identi!es a family of operations

maintaining certain spectral properties such as eigenvalues of the
graph during changes. Compared to the common multiplicative
spectral similarity [5, 6, 43], De!nition 5.1 possesses an additive
tolerance applied onto the graph Laplacian, which allows for modi-
!cation on speci!c entries of the matrix 𝝐 and suits our scenario.

Then we amend the graph Laplacian smoothing problem De!-
nition 3.1 to conduct on the sparsi!ed graph. If the corresponding
Laplacian matrix adheres to the 𝑉-spectral similarity constraint in
De!nition 5.1, we have the following theorem for bounding the
optimization goal of the approximate smoothing problem:

T’$()$* 5.2 (Approximate Graph Laplacian Smoothing).
Given two graphs G = ↘V, E≃ and Ĝ = ↘V, Ê≃, where Ê is the
sparsi!ed edge set. The Laplacian matrix �̂� of Ĝ is 𝑉-similar to 𝝐 of
G. Then the solution �̂�⇔ to the problem Eq. (4) using �̂� is called an
𝑉-approximation of the solution 𝜽⇔ using 𝝐 , and:

↑�̂�⇔ ↗ 𝜽⇔↑ ⇑ 𝑊𝑉 ↑𝜽⇔↑. (15)

P)((#. By using the closed-form solution in Eq. (5) and the fact
that 𝜾↗1 ↗ 𝜿↗1 = 𝜿↗1 (𝜿 ↗𝜾)𝜾↗1, we have:

�̂�⇔ ↗ 𝜽⇔ =
(
(𝜼 + 𝑊 �̂�)↗1 ↗ (𝜼 + 𝑊𝝐)↗1

)
𝜻

= (𝜼 + 𝑊 �̂�)↗1 (𝑊 �̂� ↗ 𝑊𝝐) (𝜼 + 𝑊𝝐)↗1𝜻 = 𝑊 (𝜼 + 𝑊 �̂�)↗1 (�̂� ↗ 𝝐)𝜽⇔ .
From Eq. (13), we can acquire the di"erence between the raw

and approximate Laplacian matrices based on the spectral property:
↑𝝐 ↗ �̂�↑2 = sup

↑𝜹 ↑=1
𝜻⇒ (𝝐 ↗ �̂�)𝜻 = 𝜻⇒0 (𝝐 ↗ �̂�)𝜻0 ⇑ 𝑉𝜻⇒0 𝜼 𝜻0 = 𝑉, (16)

where ↑ · ↑2 is the matrix spectral norm, and the supremum is
achieved when 𝜻 = 𝜻0.

The distance between 𝜽⇔ and �̂�⇔ follows the consistency of spec-
tral norm ↑𝜾𝜻 ↑ ⇑ ↑𝜾↑2↑𝜻 ↑. By substituting Eq. (16) and utilizing
the property of spectral norm, we have:
↑�̂�⇔ ↗ 𝜽⇔↑ ⇑ 𝑊 ↑ (𝜼 + 𝑊 �̂�)↗1↑2 · ↑�̂� ↗ 𝝐↑2 · ↑𝜽⇔↑

= 𝑊𝑉 ↑𝜽⇔↑ ·max
𝑀

{
1

𝑋𝑀 (𝜼 + 𝑊 �̂�)

}
=

𝑊𝑉 ↑𝜽⇔↑
1 + 𝑊𝑋1 (�̂�)

= 𝑊𝑉 ↑𝜽⇔↑,

where 𝑋𝑀 (𝜾) denotes the 𝐿-th smallest eigenvalue of matrix 𝜾. ↭
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1
1→𝐿

)

sparsi!cation for e"ciency without hindering e#ectiveness [61].
Zhou et al. [65] consider structural channel pruning by reducing
the dimension of weight matrices, while CGP [34] appends a prune-
and-regrow scheme on the graph structure. A line of research refers
to the lottery ticket hypothesis [15] in the context of graph learning
in search of a smaller yet e#ective substructure in the network.
Their general pipeline, as outlined in Figure 2(b), involves a model
compressor and a static graph sparsi!er. Among these approaches,
GEBT [56] !nds the initial subnetwork with simple magnitude-
based pruning on both adjacency and weight matrices, whilst ICPG
[48] learns the importance of edges as an external task. GLT [9]
and DGLT [53] employ an alternative optimization strategy that
progressively processes the graph and network components. Other
compression techniques such as quantization [1, 13, 52] are also
investigated. We mark the di#erence between our work and com-
pression methods that the latter graph and network sparsi!cation
are loosely coupled, usually entailing a training procedure on the
full-size graph and model to identify sparsi!cation components,
which prevents their application to large-scale data.

3 BACKGROUND
In Section 3.1, we introduce the preliminarymessage-passing scheme
of GNN architectures by distinguishing two mainstream designs
known as the iterative and decoupled GNNs. Then, we formulate the
overall GNN learning process utilizing a graph smoothing frame-
work in Section 3.2. Table 1 summarizes the primary symbols and
notations used in the paper.

3.1 Graph Neural Network
Consider a self-looped graph [25] G = →V, E↑ with 𝐿 = |V| nodes
and𝑀 = |E | edges. The neighborhood of a node 𝑁 ↓ V is N(𝑁) =
{𝑂 | (𝑁, 𝑂) ↓ E}, and its degree 𝑃 (𝑁) = |N (𝑁) |. The self-looped graph
adjacency matrix is �̄� ↓ R𝐿↔𝐿 and the diagonal degree matrix is
𝜶 = diag(𝑃 (𝑁1),𝑃 (𝑁2), · · · ,𝑃 (𝑁𝐿)). Note that diagonal entries of
�̄� are all 1, and self-loop edges are included in 𝜶 . We adopt the
general graph normalization with coe"cient 𝑄 ↓ [0, 1], where the
normalized adjacencymatrix is �̃� = 𝜶𝑀↗1�̄�𝜶↗𝑀 and the normalized
Laplacian matrix is �̃� = 𝜸 ↗ �̃�.

We identify two categories of GNN architectures. An iterative
GNN, represented by GCN [25], takes the node attribute matrix𝜹 ↓
R𝐿↔𝑁 as input, and recurrently computes the node representations
by applying di#usion 𝝐 . The representation matrix 𝜻 (𝑂+1) of the
(𝑅 + 1)-th layer is thus updated as:

𝜻 (𝑂+1) = 𝑆
(
𝝐𝜻 (𝑂 )𝜼(𝑂 )

)
, 𝑅 = 0, 1, · · · , 𝑇 ↗ 1, (1)

where 𝑆 (·) denotes the activation function such as ReLU or softamx.
Eq. (1) implies two consecutive steps of iterative GNN updates, that
the graph propagation computes the layer embedding 𝜽(𝑂 ) = 𝝐𝜻 (𝑂 ) ,
and the feature transformation multiplies the learnable weight𝜼(𝑂 ) .
For GCN, the di#usion matrix is 𝝐 = �̃�, whereas in the case of GAT
[3, 49], the di#usion matrix 𝝐 is composed of the attention weights.
For simplicity, we assume the width of node representations is
uniformly 𝑈 across all layers.

The other variant of GNN architecture, namely decoupled GNN,
aims to simplify Eq. (1) by separating the propagation from iterative
updates [16, 51, 54]. The graph-related propagation operations can

Table 1: Summary of primary symbols and notations.

Notation Description

G,V, E Graph, node set, and edge set
N(𝑃 ) Neighboring node set of node 𝑃
𝐿,𝑄, 𝑁 Node, edge, and feature size

𝑅 Number of propagation hops and network layers
𝑆 Graph smoothing regularization coe"cient
𝑇 Graph smoothing gradient descent step size
𝑈 Graph spectral approximation rate

𝑉𝐿, 𝑉𝑀 Thresholds for graph and weight sparsi!cation
𝑊𝐿, 𝑊𝑀 Numbers of removed edges and weight entries
𝑋𝐿, 𝑋𝑀 Graph sparsity and weight sparsity

�̄�, �̃� Self-looped and normalized adjacency matrix of graph G
�̄�, �̃� Raw and normalized Laplacian matrix of graph G
�̂�, �̂� Approximate adjacency and Laplacian matrix of graph Ĝ
𝜷 , 𝜸 Graph di#usion matrix and weight matrix
𝑌 [𝑃, 𝑍 ] Message entry corresponding to edge (𝑃, 𝑍)
𝑎 [ 𝑏, 𝑐 ] Network entry corresponding to neuron ( 𝑏, 𝑐 )
𝜹 , 𝝐 Node attribute matrix and feature-wise vector

𝜻(𝑁 ) , 𝜼 (𝑁 ) Embedding matrix and feature-wise vector of layer 𝑂
𝜽 (𝑁 ) , 𝜾 (𝑁 ) Representation matrix and feature-wise vector of layer 𝑂

be computed in advance as the embedding matrix 𝜽(𝑅) , and the
transformation is as simple as an MLP. Here we formulate the
decoupled GNN with the two consecutive stages as:

𝜽(𝑂+1) = 𝝐(𝑂 ) · 𝜽(𝑂 ) , 𝑅 = 0, 1, · · · , 𝑇 ↗ 1, (2)

𝜻 (𝑂+1) = 𝑆
(
𝜻 (𝑂 )𝜼(𝑂 )

)
, 𝑅 = 0, 1, · · · , 𝑇 ↗ 1, (3)

where the boundary conditions are 𝜽(0) = 𝜹 and 𝜻 (0) = 𝜽(𝑅) . As
an exemplar, in SGC [54], there is 𝝐 = �̃� and 𝜽(𝑅) = �̃�𝑅𝜹 . For
personalized propagation methods [32, 62], the di#usion matrix
𝝐(𝑂 ) varies across di#erent layers. Note that the hop number 𝑇 in
Eq. (2) and Eq. (3) can be di#erent, while we use the same notation
𝑇 interchangeably unless speci!cally mentioned.

3.2 Graph Smoothing
A broad scope of canonical GNN learning processes including both
iterative and decoupled architectures can be characterized by a
graph smoothing process with a uni!ed optimization objective
[39, 66]. We employ this framework as an approach to study GNN
by examining the overall learning objective:

De!nition 3.1 (Graph Laplacian Smoothing [39]). Given a
weighted graph G = →V, E↑ with Laplacian matrix 𝜷. Based on
an input signal vector 𝜾 ↓ R𝐿 , the Graph Laplacian Smoothing
problem aims to optimize vector 𝜿 ↓ R𝐿 with the goal:

𝜿↘ = argmin
𝜼

L, L = ≃𝜿 ↗ 𝜾 ≃2 + 𝑉 · 𝜿⇐𝜷𝜿, (4)

where ≃ · ≃ is the vector 𝑇2 norm and 𝑉 is chosen from [0, 1].
In Eq. (4), 𝜷 is the general Laplacian matrix, as normalization

only causes a di#erence in coe"cient. The !rst term of objective L
re$ects the closeness to the input signal, which is generally node
attributes representing their identity. The second term is associated
with the graph structure, acting as a regularization that constrains
the representation values of connected node pairs to be similar. In
other words, the implication of Eq. (4) optimization process is to
strike a balance between the attribute and structural information of

3
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Graph Simplification: Takeaways

ATP [WWW’24]

o Generalized MP norm
o Personalized MP hop and 

norm for each node pair

Layer-wise Pair-wise Entry-wise

NIGCN [WWW’23]

o MP as heat diffusion
o Personalized MP hop for 

each node

Unifews [ICML’25]

o MP as spectral smoothing
o Personalized MM for graph 

and weight entries



Conclusion & Future Directions
Advances in Designing Scalable GNNs
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25 min
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Summary: Challenges & Solutions
Conclusion

Multi-scaleLimited Memory

Node-wise Similarity
o PPR: faster message passing
o SimRank: global similarity
o Hub Labeling: core hub nodes

Subgraph Extraction
o Partition: reduce transmission
o Generation: tailored message 

passing
o Slicing: disk lookup

Spectral Embedding
o Combination: local & global 

channels
o Selection: adaptive filtering

Neighbor Explosion



Graph + Large Models
Future Directions

Model

Scalable
Graph Data

Management

TaskData

Transformer-based
o Powerful & attentive

o Stackable to deep layers

o Integrate with existing LMs

Message-passing

o Scalable solutions

o Tailored for graph data

o Mature & diverse options

Knowledge Graph

Social Network

Protein &
Molecules

Analysis

Retrieval

Recommendation



LM: Graph for Retrieval-Augmented Generation
Future Directions

Z Zhu et al, "Graph-based Approaches and Functionalities in Retrieval-
Augmented Generation: A Comprehensive Survey", arXiv: 2504.10499. 

4 Z. Zhu et al.

Fig. 1. Paradigm overview of RAG

Surveys of LLMs on graphs. Existing surveys of LLMs on graphs can broadly be categorized into two categories. The
!rst category focuses on how LLMs can enhance prediction tasks on graphs by utilizing their ability to comprehend
natural language [45, 88, 101, 113, 126]. These surveys examine techniques such as (i) feature augmentation, where
LLMs enhance node or edge attributes; (ii) feature alignment, which bridges textual and graph representations; and
(iii) structural enhancement, leveraging LLMs to model intricate graph relationships and topological patterns. These
works emphasize the potential of LLMs in boosting the performance of tasks like node classi!cation, link prediction,
and graph-based recommendation systems. Surveys in another category [21, 143, 144] investigate how LLMs enhance
traditional symbolic knowledge bases through three key approaches: (i) deploying LLMs as knowledge graph builders
and controllers; (ii) leveraging structured knowledge to improve LLM pretraining; and (iii) enabling LLM-augmented
symbolic reasoning to re!ne logical inference. With the approaches above, these methods showcase the potential of
LLMs to enrich and expand the capabilities of knowledge graphs in both construction and reasoning tasks. Another
important related work [145] examines the general work"ow of how RAG leverages external knowledge graphs to
enhance LLM predictions. While their work provides a valuable overview of the general RAG work"ow, it has two
critical limitations: (i) it focuses on surface-level interactions between LLMs and graph-related tasks, overlooking the
diverse roles that graphs play in advancing RAG systems (e.g., structural reasoning, and knowledge alignment); and (ii)
it lacks actionable guidance for graph researchers seeking to apply their expertise to LLM-driven methodologies.

In contrast, our work bridges this gap by systematically analyzing the multifaceted roles of graphs in RAG-driven
systems, from the angle of graph data management including database construction, query algorithms, prompt structure,
pipeline design and downstream tasks. As a resource tailored for graph researchers exploring LLM applications, we
not only delineate how graphs enhance LLM capabilities but also provide actionable strategies for leveraging graph
expertise to advance RAG systems, fostering interdisciplinary synergy.

3 Foundations of Graph-Enhanced RAG

3.1 Overall Workflow of RAG

The standard RAG pipeline combines external knowledge retrieval with the generation abilities of LLMs, creating a
robust pipeline for producing contextually accurate responses. We present an example for demonstration in Figure 1. In
this scenario, a user query explores the development of the general theory of relativity, which involves background
knowledge about scientists Albert Einstein and Marcel Grossmann. As this information may exceed the capacity of
an LLM, RAG extends its scope by retrieving relevant knowledge from an external database. This process constructs
a more informative prompt, thereby improving response accuracy. The complete work"ow can be divided into the
following four steps:
Manuscript submitted to ACM

Standard RAG
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not only delineate how graphs enhance LLM capabilities but also provide actionable strategies for leveraging graph
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The standard RAG pipeline combines external knowledge retrieval with the generation abilities of LLMs, creating a
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Manuscript submitted to ACM
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LM: Graph for Retrieval-Augmented Generation
Example: PageRank in RAG

Future Directions

N Alonso et al, "The Mixture-of-PageRanks Retriever for Long-
Context Pre-Processing", 2024. https://www.zyphra.com/post/

PPR
Local Relation

PR
Global Relation

Standard RAG
Direct Concepts



LM: Scalable Graph Transformer
Future Directions

Graph Tokens

Raw 
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…

Sequential Input
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Output Task

Efficient sequential 
graph representation?

Efficient graph Transformer 
architecture?



Graph Variants: Data Deficiency
Future Directions
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Graph Variants: Data Deficiency

• Challenge: Data Deficiency

Example: Knowledge Sharing in Recommendation

J Liu et al. “Cross-domain knowledge graph chiasmal embedding for multi-domain item-item recommendation”. TKDE’22
W Ning et al. “Multi-domain Recommendation with Embedding Disentangling and Domain Alignment”. CIKM’23.

Future Directions
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Transactions on Knowledge and Data Engineering
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I: Movie1

I: Movie2

I: Movie3

...

I: Music1 I: Music2
I: Music3

...

I: Fiction1 I: Fiction2
I: Fiction3

r: EPisode

O: SpeXialO: Rap

O: Hiroshi 
Sakurazaka O: Sci-Fi

r: Adaptation  

O:SFF

O:Wes 
Ball

r: Genre

r: Singer

r: Author
r: Genre

List of
recommended items

r: Genre

r: Theme song
I: Movie*

I: Fiction*

Fig. 1. An example of multi-domain recommendation. ⇤ stands for items that
the user likes or has interacted with. I: denotes the item, O: indicates other
information such as the attributes of the item, and r: shows the relation
between the item and the item or the relation between the item and other
information. Sci-Fi is an abbreviation for science fiction and SFF is science
fiction film.

cross-domain knowledge graph embedding. It not only can
explore the similarity between items, but also can tackle the
new items cold-start and cross-domain cold-start problems.
However, multi-domain I2I recommendation based on cross-
domain knowledge graph embedding faces two challenges. One
challenge is how to embed cross-domain knowledge graph?
Specifically, entity embedding and relation embedding in cross-
domain knowledge graph should contain information of mul-
tiple domains, and the information of different domains can be
distinguished. For example, in Figure 1, how can the embedding
of the entity I:Fiction3 be enhanced by using the music infor-
mation I:Music3 and the movie information I:Movie3? Another
challenge is how to design a reasonable multi-domain I2I rec-
ommendation method based on knowledge graph embedding.
Specifically, for a seed item, how to establish a reasonable
connection between it and other items in multiple domains
for recommendation decision rather than simply calculating the
inner product between item vectors. For instance, in Figure 1,
although the embeddings of I:Music2 and I:Fiction3 have low
similarity, there may exist a link (relation) to connect them
together.

To meet these challenges, we design a novel cross-domain
knowledge graph embedding method and a multi-domain I2I
recommendation method. In summary, our contributions are
shown below.

• A cross-domain knowledge graph chiasmal embedding
(CDKG-CE) method is proposed to efficiently distinguish
and associate all items in multiple domains. Besides,
a binding rule is proposed to achieve the interaction
between multiple domains, thereby reaching the goal
of homo-domain embedding and hetero-domain embed-
ding.

• The link prediction of knowledge graph is applied to
recommendation method and a multi-domain I2I rec-
ommendation (MD-I2IR) is proposed. First, this is the

first time that knowledge graph is applied to solve the
multi-domain I2I recommendation problem; second, link
prediction is a downstream application of knowledge
graph, and this is the first time that link prediction is
applied to implement a specific recommendation process.

• Experiments are conducted on two datasets to evaluate
the performance of the proposed CDKG-CE and M-
DI2IR. The experimental results show that CDKG-CE and
MDI2IR are better than the corresponding benchmark
methods in terms of knowledge graph embedding and
recommendation methods respectively. Moreover, the
proposed MDI2IR method demonstrates the superiority
of cross-domain recommendation over the recommended
items distribution of the benchmark methods.

The remaining of the paper is organized as follows. Relat-
ed work on knowledge graph embedding, knowledge graph-
based recommendation and multi-domain recommendation are
presented in Section 2. Section 3 presents some definitions and
task description. Section 4 details the proposed CDKG-CE and
Section 5 provides the algorithm of MD-I2IR. The experimental
results of CDKG-CE and MD-I2IR on two datasets are discussed
in Section 6. Conclusion and future work are given in Section 7.

2 RELATED WORK

2.1 Knowledge graph embedding
Knowledge graph (KG) is a practical method that can denote
large-scale information from multiple fields. Specifically, the KG
is a set consisting of numerous knowledge triples < eh, r, et >,
i.e., KG = {< eh, r, et > |eh, et 2 E, r 2 R}, where eh and
et are head entity and tail entity in the knowledge triple, and
r is the relation in the knowledge triple, E represents the set
of entities and R shows the set of relations. Each knowledge
triple < eh, r, et > means a fact of the relation r from entity eh

to entity et. For example, < Da V inci, painted,Mona Lisa >

describes the case that Mona Lisa is painted by Da Vinci. Due to
its strong expressive ability and flexibility in reuse, knowledge
graph is widely employed in many application fields, such as
natural language understanding [10], [11], question answering
systems [12], [13] and recommendation systems [14], [15].

To efficiently apply the knowledge graph to various fields,
the knowledge graph embedding (KGE) method is commonly
used to embed KG into a low-dimensional space. KGE can quan-
tify KG by its semantic meaning or high-order proximity, while
retaining its inherent characteristics [16]. The existing knowl-
edge graph embedding methods can be roughly divided into
geometry-based method and deep learning-based method. The
geometry-based method interprets the relation as the geometric
transformation of the entity in the latent space. Specifically,
TransE regards the relation r as the translation between the
head entity eh and the tail entity et in Cartesian coordinates [17].
After that, a large number of variant methods based on TransE
are introduced to improve the effect of knowledge graph em-
bedding. For example, TransH deals with one-to-many, many-
to-one, and many-to-many complex relations [18] and TransD
enables each entity to have a different representation under
diverse relations [19]. The deep learning-based method learns
the representation of the head entity and relation to make it
closer to the representation of the tail entity. Dettmers et al.
propose ConvE based on 2D convolutional neural network to
predict the relation of the knowledge graph [20]. Based on

o Overlap Sparsity: few overlap data 
between domains

o Data Sparsity: limited data available in 
some domains

• Solution: Cross-domain learning by 
knowledge alignment
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Figure 1: The model disentangling architecture in existing
MDRmethods. Shared model learns the inter-domain knowl-
edge that generalizes across domains. Domain-speci!c mod-
els learn intra-domain knowledge that only works for each
domain. The red dashed line represents the back-propagation
"ow. Both intra-domain and inter-domain knowledge will
be used to update the input embedding.

di!erent domains is challenging, particularly when the overlap of
users and items between domains is small (i.e., overlap sparsity)
because these common users/items usually serve as the bridge for
knowledge sharing. In addition, for domains with limited user-item
interaction data (i.e., data sparsity), knowledge sharing is more crit-
ical to recommendation accuracy because small domains usually
contain less information and external knowledge can help avoid
over-"tting [17, 58] and bring more bene"ts.

Most existing MDR approaches [42, 46, 63] conduct model-level
disentangling (as illustrated in Figure 1, referred to as model disen-
tangling) and focus on designing better domain-shared and domain-
speci"c models. For example, STAR [46] leverages fully-connected
networks (FCNs) as domain-shared and domain-speci"c models.
TreeMS utilizes GAT [52] as the shared model, and combines FCN
and LSTM [14] in domain-speci"c model design. MGFN [63] uses
GAT [52] to learn both intra-domain and inter-domain knowl-
edge. However, the problem with model disentangling is that inter-
domain and intra-domain knowledge are still entangled in a single
embedding for each user/item. The inter-domain knowledge and
each speci"c domain’s knowledge may lead to di!erent gradient
update directions. Since gradients are accumulated, they may cancel
each other out if they point in opposite directions and then result
in sub-optimal performance [15, 27, 62]. Thus, model disentangling
su!ers from the gradient con!ict problem and cannot address it
well. In addition, existing methods lack an e!ective mechanism
to transfer knowledge across domains because they realize knowl-
edge sharing only relying on the overlapping users/items among
domains [30, 32, 63]. These approaches face limitations, especially
when the overlapping users/items are limited.

In this paper, we propose a new method EDDA for MDR, which
consists of an embedding disentangling (ED) recommender and a do-
main alignment strategy. Firstly, The ED recommender can exploit
knowledge from other domains while avoiding negative transfer
(challenge ✁). It explicitly disentangles inter-domain and intra-
domain knowledge into separate embeddings for each user/item.
For every user/item, EDDA trains both an inter-domain embedding
that captures knowledge across all domains and an intra-domain
embedding for each domain. These embeddings are projected by
the respective inter-domain and intra-domain models and then

concatenated to conduct recommendations for each domain. Un-
like model disentangling, ED recommender explicitly separates
inter-domain and intra-domain knowledge into distinct embed-
dings, e!ectively avoiding the gradient con#ict problem. Secondly,
to enhance knowledge sharing across domains and alleviate the
overlap and data sparsity problem (challenge ✂), we propose a do-
main alignment strategy based on random walks to identify similar
user/item pairs from di!erent domains. Speci"cally, we use the
overlapping users/items in two domains as anchors and perform
random walks [23, 59] on the user-item interaction graph of each
domain. For each user/item, we calculate its random walk stopping
probability on the anchors, which is used to de"ne the similarity be-
tween users/items from di!erent domains. The rationale is that two
users/items should exhibit similar behavior patterns or properties if
they are likely to reach the same set of anchors. We achieve knowl-
edge sharing by encouraging similar users/items from di!erent
domains to have similar embeddings.

We conduct extensive experiments to compare EDDA with 12
state-of-the-art baselines on 3 real datasets each containing 3 to 8
domains. The results show that EDDA signi"cantly outperforms
the baselines for all datasets and all domains. In particular, the
improvements of EDDA over the best-performing baseline in AUC
and recall are up to 7.6% and 41.8%, respectively.

To sum up, we make the following contributions in this paper:

• Propose an embedding disentangling recommender for MDR,
which explicitly disentangles inter-domain and intra-domain
knowledge at both model and embedding level.

• Propose a random walk-based domain alignment strategy to
identify similar users/items from di!erent domains, which
further helps knowledge sharing.

• Conduct extensive experiments to evaluate EDDA that inte-
grates the above two components, demonstrating its e!ec-
tiveness, and validating the key designs.

The rest of the paper is organized as follows. Section 2 gives the
de"nition of multi-domain recommendation. Section 3 presents our
embedding disentangling recommender, and Section 4 elaborates
on our random walk-based domain alignment strategy. Section 5
reports the experimental results. Section 6 discusses the related
works, and Section 7 draws the concluding remarks.

2 PROBLEM DEFINITION
Multi-domain recommendation (MDR). A domain d can be
represented as d = {U

d,Id,Rd
}, where Ud is the user set, Id is

the item set, and R
d is the set of user-item interactions (e.g., clicks,

purchases). MDR deals with a set of domains D = {d1, d2, · · · , d𝐿 },
where d𝑀 refers to a speci"c domain and 𝐿 is the number of
domains. There may exist some common users and items for two
di!erent domains d and d→ (called overlap), i.e.,Ud

↑U
d→ ω ↓ or

I
d
↑ I

d→ ω ↓, which allows to share knowledge across domains
and achieve better recommendation accuracy than handling each
domain individually. The task is to "nd the items that a user is likely
to interact with for each domain d𝑀 ↔ D. Speci"cally, we want to
learn a score function 𝑀 (𝑁, 𝑂 |d𝑀) that estimates the preference of
user 𝑁 for item 𝑂 , with which a set of items with the highest scores
can be recommended to each user.

W Ning et al. “Multi-domain Recommendation with Embedding Disentangling and Domain Alignment”. CIKM’23.
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o Large storage
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CPU-oriented
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