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Scalable Graph Neural Networks (GNNSs)

 GNNSs, such as Graph Convolutional Networks (GCNSs), achieve
strong performance on many graph understanding tasks

* There are increasing demands on studying modern real-world large-
scale datasets (million- or billion-scale graphs)

« GCNs are resource-demanding and difficult to apply on large-scale
graphs: iterative propagation, memory overhead

« Existing approaches are not scalable enough: GBP!" uses 104 sec.
and >192 GB RAM on Papers100M (111M nodes, 1.6B edges)

[1] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du, and Ji Rong Wen. 2021. Approximate Graph Propagation. In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Vol. 1. Association for Computing Machinery, 1686-1696.
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Highlights & Contributions

« SCARA Framework: Pre-Propagation Decoupling Model, optimized
propagation with fast GPU batch training and inference

* FEATURE-PUSH: feature-oriented fast vector-based propagation,
sub-linear precomputation complexity

* FEATURE-REUSE: efficient reuse among multiple features, further
saves computation with guaranteed precision

* Performance Evaluation: up to 100x faster precomputation, able
to process billion-scale Papers100M in 100 seconds
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Complexity of Scalable GNN

* Vanilla / Sampling Model: GCNF]
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[2] Thomas N Kipf & Max Welling. “Semi-supervised classification with graph convolutional networks”. ICLR 2017.




Complexity of Scalable GNN

* Vanilla / Sampling Model: GCNF]

1. lterative Aggregation & Propagation: O(ILmF + ILnF?)

() Not scalable to large m and n
(%) Not optimized for batch processing

* Pre-Propagation Model: SCARA (ours)

1. Propagation Precomputation: O(Fy/mlogn/A)

@ Only sublinear to n

2. Feature Transformation: O(ILnF?)
@ Efficient GPU batch training

[2] Thomas N Kipf & Max Welling. “Semi-supervised classification with graph convolutional networks”. ICLR 2017.




SCARA: FEATURE-PUSH "

Feature X . .
du)l~
Residue r(x;u) H
 Forward Push on Feature Value Reserve 7(x; 1)
- Initialized by normalized feature vector D
P=D"" (AD_l)lDl_rX (1) Forward Push
- Complexity: O (||x]l1/7max) on Feature
« Random Walk on Feature Residue r(x; u) ;ﬁ
(x;u)
- Reduced number of Random Walks
- Complexity: O (m - rmax @
P y ( /’B) o Random Walk
* Combination: Push Coefficient p on Residue
- Overall complexity: of m”/’;”l) ]
r(x;u) H H
— O(ymlogn/A) (2) (x5 u)

—74



SCARA: FEATURE-REUSE
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=Xperimental Evaluation

 Time Efficiency: 10-100x faster precomputation, comparable or
better training and inference clock time

 Memory Efficiency: Paper100M with 64GB without OOM

« Effectiveness: similar or better F1-score, fast convergence

Dataset |  Nodesn Edges m Features F Dataset |  Nodesn Edges m Features F
Reddit | 232,965 114,615,892 602 |Papers100M | 111,059,956 1,615, 685,872 128
) Reddit Papers100M
Transductive
Learn (Pre. +Train) Infer Mem. F1 Learn (Pre. + Train) Infer Mem. F1
GraphSAINT | 51.5( - 51.5) 26.1 11.1 30.7 £3.0 — — - —  OOM -
GAS 3563 ( - 3563) 0.1 14.6 38.0 £0.2 — — - - OOM -
PPRGo 163 ( 157+ 4.8) 741 8.0 31.0%1.7 — — - - OOM -
GBP 1891 (2127 + 16.3) 6.2 84 39.210.3 - - - - OOM -
SCARA (ours) | 12.0( 1.8 % 10.6) 48 4.7 403 0.7| 1471 (83.5+ 1388) 2.8 63.7 35.5+0.8
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=Xperimental Evaluation

 Time Efficiency: 10-100x faster precomputation, comparable or
better training and inference

 Memory Efficiency: Paper100M with 64GB without OOM

« Effectiveness: similar or better F1-score, fast convergence
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Summary and Future Work

« SCARA framework: FEATURE-PUSH for fast single feature
computation, FEATURE-REUSE for reuse among features

* Feature-Oriented Propagation: sub-linear precomputation
complexity with guaranteed precision

* Performance Evaluation: 10-100x faster precomputation, efficient
feature transformation, relatively low RAM overhead

* Future Work: expand and generalize feature-oriented optimizations,
apply to more GNN models
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