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CONTRIBUTION RELATED WORK & COMPLEXITY

SCARA framework: Graph propagation decoupled as one-time precomputation, Vanilla / Sampling Model Learn Time Memory
efficient GPU batch training and inference. GCN [1] O(ILmF + ILnFZ) O(LnF)
FEATURE-PUSH algorithm: Feature-oriented fast vector-based propagation, sub- ©) Iterative Propagation: not scalable tom &) No GPU Utilization
linear precomputation complexity. Post-Propagation Model Precomputation Time Train Time Memory
FEATURE-REUSE algorithm: Efficient result reuse among multiple features, further PPRGo [2] O(m/rmax) O(IKnF + ILnF?) O(n/rmax)
save computation with guaranteed precision. &) Not Scalable Propagation &) High Overhead
Performance Evaluation: 10-100x faster precomputation, low RAM overhead, Pre-Propagation Model Precomputation Time Train Time Memory
able to process billion-scale graph Papers100M in 100 seconds. GBP [3] O(LF+/Lmlog(Ln)/€) O(ILnF?) O(nF)
& Not Feature-Oriented & Inefficient RAM Ultilization
SCARA (ours) O(F+/mlogn/A) O(ILnF?) O(nF)

PROPOSED FRAMEWORK © Only sublinear to n © Efficient GPU & RAM Utilization

Pre-Propagation Decoupling Framework
(1) Propagation Precomputation
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| =0 | Performance Evaluation
Graph Embedding «- Graph Adjacency x Node Feature
(2) Feature Transformation Time Efficiency: fastest overall learning time, 10-100x faster precomputation,
g — 4 (H(I)W(l)) 1=0.1..- [—1 comparable or better training and inference clock time
Layer Representation <- Previous Representation x Learnable Weights Memory Efficiency: Paper100M with 64GB without OOM
FEATURE-PUSH Effectiveness: similar or better F1-score, fast and stable convergence
(1) Initial Normalization (2) Forward Push on Feature
(1-a)r1/3 Dataset | Nodes n Edges m Features F Dataset | Nodes n Edges m Features F
Node Sizen Reddit | 232,965 114, 615, 892 602 | Papers100M | 111,059,956 1,615, 685,872 128
Node Feature x . . , Reddit Papers100M
Transductive _ _
Node degree . d(u)l_r Z:> Learn (Pre. +Train) Infer Mem. F1 Learn (Pre. +Train) Infer Mem. F1
 Nermaliza | GraphSAINT | 515( - 515) 261 11.1 307#30] - - - - ooM -
1 NOrmatization ) GAS 3563 ( -  3563) 0.1 146 38002 - - - - ooM -
Residue r(x; u) r(x; u) PPRGo 163 ( 157+ 4.8) 741 80 31017 - - - - ooM -
Reserve 7(x;u) ] 7 (3, 1) GBP 1891 (2127 + 16.3) 6.2 84 39.2+03| - — — - OOM —~
< SCARA (ours) | 12.0( 1.8 + 10.6) 43 4.7 40.3 +0.7 1471 (83.5+ 1388) 2.8 63.7 35.5+0.8
(4) Final Normalization (3) Random Walk on Residue
Convergence Curve
Embeddlng P(x’ u) . .::- GrahSAINT GBP 1007 GrahSAINT GBP )
4 <:Z 407 — GAS — SCARA (Ours) ¥ — GAS — SCARA (Ours)
< — PPRCo S — PPRGo
Node degree -d(u)r_1 %30 - % 80
r(x;u) ] ] r(x;u) 2 =)
a(x;u) a(x;u) 5 2 <
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Overall Propagation: Overall Complexity: U N N
B_ (AD_l)l Dlry O(llxlll .\ ”maa[;' m) O mll;lll) > O(mToan/) Reddit: Transductive Learning PPI: Inductive Learning
— Fmax
N Bllxll1 _ A*/log 2n _
® 6 O A 2/3+2 Ablation Study
Feature F=100 F =200 F =400 F =602
FEAT RE'RE E _ ] w/0 REUSE 0.46 0.93 1.83 2.84
U Us FEATURE-REUSE: Pre. Time w/ REUSE 0.35 0.67 1.30 1.85
_ Speed-up 133% 138% 141% 155%
(1) Base Selection Up to 1.6x speed-up
e w/0 REUSE 27.7 31.9 37.0 40.5
Node size n K | High Prc. FEATURE-PUSH . mbedaing Viatrix i Accuracy  w/ REUSE 27.8 31.7 36.7 40.3
m / u m o m > 7(bi, yBs) \ No effect on precision N o1 Iy o Iy
Base Features
i \ (2) Sparse Calculation /
Featl.lre F-K : : S REFERENCES
size . 4 parse
Feature Matrix " ¥ Residue _ . . _ o _ _
+ + 0O e lexity: [1] Thomas N Kipf & Max Welling. “Semi-supervised classification with graph convolutional networks”. ICLR 2017.
Wh bv feat " _ - .+ _ vera ompiexity: [2] Aleksandar Bojchevski et al. “Scaling graph neural networks with approximate PageRank”. SIGKDD 2020.
Yy Process by teature: Lglflzrafeolrizlti?:sn Low Prc. ﬂ FEATURE-PUSH m(1 = Osym) [3] Ming Chen et al. “Scalable graph neural networks via bidirectional propagation”. NeurlPS 2020.
P ~ ~ Bs(1 = yOsum) [4] Hanging Zeng et al. “GraphSAINT: graph sampling based learning method”. ICLR 2019.
e F'IS constant 2. 0; - (b, yfs) + n(x',(1-y20)ps) =n (xf) [5] Matthias Fey et al. “GNNAutoScale: scalable and expressive graph neural networks via historical embeddings”. ICML 2021.
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