Publish at: 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Present at: Singapore ACM SIGKDD Symposium 2024

LD²: Scalable Heterophilous GNN with Decoupled Embeddings

Ningyi Liao Siqiang Luo Xiang Li

PRESENT BY: Ningyi Liao

Jieming Shi

Background: Learning on Graphs

Social Networks

Networks

Molecular Networks

Human Brain Networks

Knowledge Graphs

Transportation Networks

Tag Networks

Biological Networks

Road Networks

Images downloaded from the Internet.

Background: Graph Heterophily

- Homophily: connected nodes tend to be of similar classes
- Heterophily: connected nodes tend to be of dissimilar classes

Background: Heterophilous GNN

- Example of heterophily: fraudster – normal user in transaction networks
- Conventional locality-based
 GNNs not suitable
- Existing heterophilous GNNs rely on global computation

Background: Global Hetero GNN

- Geom-GCN: global embedding
- LINKX: full-graph adjacency MLP

[1] H Pei et al. "Geom-GCN: Geometric Graph Convolutional Networks". ICLR 2020.

[2] D Lim et al. "Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods". NeurIPS 2021.

Motivation: GNN Scalability

- <u>Neighborhood explosion</u>: overhead increases for longrange computation
- Real-world graphs are on the scale of millions or billions
- Global computation not scalable to large graphs

Motivation: Hetero GNNs not Scalable Enough

Natural conflict:

Global Computation vs Scalability & Minibatch

Model	Time - Precomp	Time - Train	Time - Test	GPU Memory
GPRGNN	<i>O</i> (<i>m</i>)	$O(IL_PmF + ILnF^2)$	$O(L_P mF + LnF^2)$	$O(LnF + m + LF^2)$
GCNJK	_	$O(ILmF + ILnF^2)$	$O(LmF + LnF^2)$	$O(L_C nF + L_C F^2)$
MixHop	-	$O(IL_PLmF + ILnF^2)$	$O(L_P LmF + LnF^2)$	$O(CLnF + CLF^2)$
LINKX	_	$O(ImF + ILnF^2)$	$O(mF + LnF^2)$	$O(L_C n_b F + L_C F^2 + nF)$
LD ² (ours)	$O(L_P mF)$	$O(ILnF^2)$	$O(LnF^2)$	$O(L_C n_b F + L_C F^2)$

Terms that not suitable for minibatch

Method: LD² Framework

- Precomputation:
 - $\boldsymbol{P}_A, \boldsymbol{P}_X = \mathrm{A}^2 \mathrm{Prop}(\boldsymbol{A}, \boldsymbol{X})$

• Feature Transformation:

 $\boldsymbol{H}^{(L)} = \mathrm{MLP}(\boldsymbol{P}_{A}\boldsymbol{W}_{A}\|\boldsymbol{P}_{X}\boldsymbol{W}_{X})$

Approximate Propagation + Feature Embedding + Feature Transformation

Method: Adjacency Embedding

• Low-Dimensional 2-hop adjacency decomposition

Method: Feature Embedding

• Long-Distance generalized graph propagation

CHANNEL1: Constant 2-hop Adjacency Propagation

$$P_{X,L2} = \sum_{l=1}^{L} \bar{A}^{2l} \cdot X$$

CHANNEL²: *Inverse* 1-hop Laplacian Propagation

$$\boldsymbol{P}_{X,H} = \sum_{l=1}^{L} (\tilde{\boldsymbol{L}} + \boldsymbol{I})^{l} \cdot \boldsymbol{X}$$

Method: Embedding Precomputation

• Multi-channel embedding, one-time computation:

Evaluation: Effectiveness

- Top 1 accuracy on 6/8 large-scale heterophilous datasets
- No accuracy drop for minibatch

Dataset	genius	tolokers	arxiv-year	penn94	twitch-gamers	pokec	snap-patents	wiki
Nodes n	421,858	11,758	169,343	41,536	168,114	1,632,803	2,738,035	1,770,981
Edges m	922,864	1,038,000	1,157,799	1,362,220	6,797,557	22,301,964	13,967,949	242,507,069
F / N_c	12/2	10/2	128 / 5	4,814 / 2	7/2	65 / 2	269 / 5	600 / 5
MLP	82.47 ±0.06	73.38 ±0.25	37.23 ±0.31	74.41 ±0.48	61.26 ±0.19	61.81 ±0.07	23.03 ± 1.48	35.64 ±0.10
PPRGo	79.81 ±0.00	78.16 ± 0.00	39.35 ± 0.12	58.75 ±0.31	47.19 ±2.26	50.61 ± 0.04	(>12h)	(>12h)
SGC	79.85 ±0.01	71.16 ±0.06	43.40 ± 0.16	68.31 ± 0.27	57.05 ±0.21	56.58 ± 0.06	37.70 ± 0.06	28.12 ± 0.08
GCNJK-GS	80.65 ± 0.07	74.41 ±0.73	48.26 ± 0.64	65.91 ±0.16	59.91 ± 0.42	59.38 ± 0.21	33.64 ± 0.05	42.95 ±0.39
MixHop-GS	80.63 ± 0.04	77.47 ± 0.40	49.26 ±0.16	75.00 ± 0.37	61.80 ± 0.00	64.02 ± 0.02	34.73 ± 0.15	45.52 ± 0.11
LINKX	82.51 ±0.10	77.74 ±0.13	50.44 ±0.30	78.63 ±0.25	64.15 ± 0.18	68.64 ± 0.65	52.69 ± 0.05	50.59 ± 0.12
LD ² (ours)	85.31 ±0.06	79.76 ±0.26	50.29 ± 0.11	75.52 ±0.10	64.33 ±0.19	74.93 ±0.10	58.58 ±0.34	52.91 ±0.16

Evaluation: Efficiency

- 3-15× faster minibatch training, significantly fast inference
- Up to 5× lower GPU memory for large graphs

Dataset	twitch-gamers		pokec			snap-patents			wiki			
	Learn	Infer	Mem.	Learn	Infer	Mem.	Learn	Infer	Mem.	Learn	Infer	Mem.
MLP	6.36	0.02	0.61	47.86	0.11	13.77	27.39	0.28	9.33	133.55	0.62	18.15
PPRGo	10.46+15.88	0.41	9.64	121.95+56.11	2.69	3.82	(>12h)		(>12h)			
SGC	0.09+0.74	0.01	0.28	1.05+8.08	0.01	0.28	4.94+23.54	0.01	0.42	12.66+7.98	0.01	0.52
GCNJK-GS	71.48	0.02*	7.33	27.33	0.09*	9.03	19.02	0.23*	9.21	95.52	0.69*	16.36
MixHop-GS	52.12	0.01*	1.49	71.35	0.03*	12.91	45.24	0.16*	19.58	84.22	0.23*	16.28
LINKX	10.99	0.19	2.35	28.77	0.33	9.03	39.80	0.22	21.53	180.71	1.14	14.53
LD ² (ours)	0.85+ 1.96	0.01	1.44	17.95+ 6.18	0.01	3.82	31.32+ 6.96	0.02	3.96	28.12+ 6.50	0.01	4.47

Evaluation: Efficiency

- Higher propagation hops are important for distant information
- Combination of channels is effective for different graphs

Summary

- LD² Framework: Pre-Propagation Decoupled Heterophilous GNN, optimized minibatch training
- Low Dimension Adjacency Embedding: embed full graph topology in low dimensional matrix representation
- Long Distance Feature Embeddings: multi-channel node features by different graph propagation schemes
- **Performance Improvement**: 3–15× faster minibatch training and inference, up to 5× smaller memory footprint

Following work ...

Benchmarking Spectral Graph Neural Networks: A Comprehensive Study on Effectiveness and Efficiency

GitHub: gdmnl/Spectral-GNN-Benchmark

- <u>Unified framework</u> for over 30 spectral GNN filters
- <u>Scalable pipeline</u> for training on million-scale graphs
- Observation and guideline on
 <u>homophilous & heterophilous</u> data

THANK YOU

Acknowledgments

This research is supported by Singapore MOE AcRF Tier-2 funding (MOE-T2EP20122-0003), NTU startup grant (020948-00001), and the Joint NTU-WeBank Research Centre on FinTech. Xiang Li is supported by Shanghai Science and Technology Committee General Program No. 22ZR1419900 and National Natural Science Foundation of China No. 62202172. Jieming Shi is supported by Hong Kong RGC ECS No. 25201221, National Natural Science Foundation of China No. 62202404.