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Figure 2: Input data generation as road network graphs. (a) Linköping road networks represented as a graph.

Colors represent different ground truth labels of road types. (b) A closeup of Linköping road networks

represented as a graph with a line graph representation overlaid in black. Colors represent different ground

truth labels of road types.

4.1. Input Dataset

To address the main problems of this project, road network datasets are represented

as graphs composed of vertices and edges. To test transductive and inductive capabili-

ties of the assessed methods, we generate two datasets of road networks. Using Open

Street Map (OSMnx [44]), we extract the crowd-sourced geographic information of

road networks in Swedish Cities from OSMnx.

Both datasets are preprocessed in the following way. The OSMnx data of driving

roads is extracted from a 14 km ⇥ 14 km tile centered at the city centroid. The resulting

graph is simplified such that intersections are consolidated within a 10 m distance and

interstitial nodes are reduced. Directions of edges are removed and parallel edges are

consolidated, a limitation necessary to apply the graph representation learning meth-

ods.

We convert graph G into a line graph L(G), as described in Section 3.1. Each edge

of G becomes a node in L(G) and two edges that share a common node in G become

an edge in L(G). Figure 2 illustrates edges of the original graph G colored by their

different ground truth road type labels. Overlaid is the line graph representation with

black edges and colored nodes corresponding to road type label.
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Background: Learning on Graphs



Background: Graph Heterophily

Karimi, F., et al. Homophily influences ranking of minorities in social networks. Sci Rep (2018).

• Homophily: connected nodes tend to be of similar classes
• Heterophily: connected nodes tend to be of dissimilar classes



Background: Heterophilous GNN

• Example of heterophily: 
fraudster – normal user in 
transaction networks
• Conventional locality-based 

GNNs not suitable
• Existing heterophilous GNNs 

rely on global computation

Center Project Course Student StaÆ Faculty

Local Aggregation

Global Aggregation

Same Label: 10%

Same Label: 40%



Background: Global Hetero GNN

[1] H Pei et al. “Geom-GCN: Geometric Graph Convolutional Networks”. ICLR 2020. 
[2] D Lim et al. “Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods”. NeurIPS 2021. 

Published as a conference paper at ICLR 2020

ing MPNNs, the scheme extracts more structural information of the graph and can aggregate feature
representations from distant nodes via mapping them to neighborhoods defined in the latent space.

We then present an implementation of the geometric aggregation scheme in graph convolutional net-
works, which we call Geom-GCN, to perform transductive learning, node classification, on graphs.
We design particular geometric relationships to build the structural neighborhood in Euclidean and
hyperbolic embedding space respectively. We choose different embedding methods to map the graph
to a suitable latent space for different applications, where suitable topology patterns of graph are pre-
served. Finally, we empirically validate and analyze Geom-GCN on a wide range of open datasets
of graphs, and Geom-GCN achieved the state-of-the-art results.

In summary, the contribution of this paper is three-fold: i) We propose a novel geometric aggregation
scheme for graph neural network, which operates in both graph and latent space, to overcome the
aforementioned two weaknesses; ii) We present an implementation of the scheme, Geom-GCN, for
transductive learning in graph; iii) We validate and analyze Geom-GCN via extensive comparisons
with state-of-the-art methods on several challenging benchmarks.

2 GEOMETRIC AGGREGATION SCHEME

In this section, we start by presenting the geometric aggregation scheme, and then outline its ad-
vantages and limitations compared to existing works. As shown in Fig. 1, the aggregation scheme
consists of three modules, node embedding (panel A1 and A2), structural neighborhood (panel B1
and B2), and bi-level aggregation (panel C). We will elaborate on them in the following.

Figure 1: An illustration of the geometric aggregation scheme. A1-A2 The original graph is mapped
to a latent continuous space. B1-B2 The structural neighborhood. All adjacent nodes lie in a small
region around a center node in B1 for visualization. In B2, the neighborhood in the graph contains all
adjacent nodes in graph; the neighborhood in the latent space contains the nodes within the dashed
circle whose radius is ⇢. The relational operator ⌧ is illustrated by a colorful 3⇥ 3 grid where each
unit is corresponding to a geometric relationship to the red target node. C Bi-level aggregation on the
structural neighborhood. Dashed and solid arrows denote the low-level and high-level aggregation,
respectively. Blue and green arrows denote the aggregation on the neighborhood in the graph and
the latent space, respectively.

A. Node embedding. This is a fundamental module which maps the nodes in a graph to a latent
continuous space. Let G = (V,E) be a graph, where each node v 2 V has a feature vector xv

and each edge e 2 E connects two nodes. Let f : v ! zv be a mapping function from a node in
graph to a representation vector. Here, zv 2 Rd can also be considered as the position of node v in
a latent continuous space, and d is the number of dimensions of the space. During the mapping, the
structure and properties of graph are preserved and presented as the geometry in the latent space.
For instance, hierarchical pattern in graph is presented as the distance to the original in embedding
hyperbolic space (Nickel & Kiela, 2017). One can employ various embedding methods to infer the
latent space (Cai et al., 2018; Wang et al., 2018).
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be directly applied to the non-homophilous setting, as they oftentimes assume homophily in their
construction [71, 32, 20, 10].

Non-homophily in graphs also degrades proven graph learning techniques that have been instrumental
to strong performance in scalable graph learning. For instance, label propagation, personalized
PageRank, and low-pass graph filtering have been used for scalable graph representation learning
models, but these methods all assume homophily [71, 32, 20, 10]. Moreover, we give empirical
evidence that existing minibatching techniques in graph learning [16, 77] significantly degrade
performance in non-homophilous settings. In response, we develop a novel model, LINKX, that
addresses these concerns; LINKX outperforms existing graph learning methods on large-scale non-
homophilous datasets and admits a simple minibatching procedure that maintains strong performance.

To summarize, we demonstrate three key areas of deficiency as mentioned above, namely: (1) that
there is a lack of large, high-quality datasets covering different non-homophilous applications, (2) that
current graph minibatching techniques and scalable methods do not work well in non-homophilous
settings, and (3) that prior non-homophilous methods are not scalable. To these ends, this paper
makes the following contributions:

Dataset Collection and Benchmarking. We collect a diverse series of large, non-homophilous graph
datasets and define new node features and tasks for classification. These datasets are substantially
larger than previous non-homophilous datasets, span wider application areas, and capture different
types of complex label-topology relationships. With these proposed datasets, we conduct extensive
experiments with 14 graph learning methods and 3 graph minibatching techniques that are broadly
representative of the graph machine learning model space.

Analyzing Scalable Methods and Minibatching. We analyze current graph minibatching tech-
niques like GraphSAINT [77] in non-homophilous settings, showing that they substantially degrade
performance in experiments. Also, we show empirically that scalable methods for graph learning
like SGC and C&S [71, 32] do not perform well in non-homophilous settings — even though they
achieve state-of-the-art results on many homophilous graph benchmarks. Finally, we demonstrate
that existing non-homophilous methods often suffer from issues with scalability and performance in
large non-homophilous graphs, in large part due to a lack of study of large-scale non-homophilous
graph learning.

LINKX: a strong, simple method. We propose a simple method LINKX that achieves excellent
results for non-homophilous graphs while overcoming the above-mentioned minibatching issues.
LINKX works by separately embedding the adjacency A and node features X, then combining them
with multilayer perceptrons and simple transformations, as illustrated in Figure 1. It generalizes node
feature MLP and LINK regression [79], two baselines that often work well on non-homophilous
graphs. This method is simple to train and evaluate in a minibatched fashion, and does not face the
performance degradation that other methods do in the minibatch setting. We develop the model and
give more details in Section 4.

MLPA

MLPX

W

𝜎

MLPf
+|| 𝜎

Figure 1: Our model LINKX separately embeds node features and adjacency information with MLPs,
combines the embeddings together by concatenation, then uses a final MLP to generate predictions.
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• Geom-GCN: global embedding
• LINKX: full-graph adjacency MLP

Global Module



Motivation: GNN Scalability

• Neighborhood explosion: 
overhead increases for long-
range computation
• Real-world graphs are on the 

scale of millions or billions
• Global computation not 

scalable to large graphs

Xiao Li, et al., “A survey of graph neural network based recommendation in social networks”, Neurocomputing, 2023.



Motivation: Hetero GNNs not Scalable Enough

Natural conflict: 
Global Computation vs Scalability & Minibatch

Model Time - Precomp Time - Train Time - Test GPU Memory

GPRGNN 𝑂(𝑚) 𝑂(𝐼𝐿!𝑚𝐹 + 𝐼𝐿𝑛𝐹") 𝑂(𝐿!𝑚𝐹 + 𝐿𝑛𝐹") 𝑂(𝐿𝑛𝐹 + 𝑚 + 𝐿𝐹")

GCNJK – 𝑂(𝐼𝐿𝑚𝐹 + 𝐼𝐿𝑛𝐹") 𝑂(𝐿𝑚𝐹 + 𝐿𝑛𝐹") 𝑂(𝐿#𝑛𝐹 + 𝐿#𝐹")

MixHop – 𝑂(𝐼𝐿!𝐿𝑚𝐹 + 𝐼𝐿𝑛𝐹") 𝑂(𝐿!𝐿𝑚𝐹 + 𝐿𝑛𝐹") 𝑂(𝐶𝐿𝑛𝐹 + 𝐶𝐿𝐹")

LINKX – 𝑂(𝐼𝑚𝐹 + 𝐼𝐿𝑛𝐹") 𝑂(𝑚𝐹 + 𝐿𝑛𝐹") 𝑂(𝐿#𝑛$𝐹 + 𝐿#𝐹" + 𝑛𝐹)

LD2 (ours) 𝑂(𝐿!𝑚𝐹) 𝑂(𝐼𝐿𝑛𝐹") 𝑂(𝐿𝑛𝐹") 𝑂(𝐿#𝑛$𝐹 + 𝐿#𝐹")

Terms that not scalable 
to large m and n

Terms that not suitable 
for minibatch



• Precomputation:

Low-Dimensional 
Adj Embedding

Long-Distance 
Feature Embedding

• Feature Transformation:
<latexit sha1_base64="CZNhE8yK6oVtXXnS1Romlk4dju8="></latexit>

PA,PX = A2Prop(A,X)
<latexit sha1_base64="hfihH8HhjhjJg7UPuWcle6dl0gI="></latexit>

H
(L) = MLP(PAWAkPXWX)

Linear to m and n

Decoupled simple 
minibatching

n

F

X

A <latexit sha1_base64="xAfGAKhKMYjyzdCP4w5VrDLnUYs=">AAACBHicbVC7TsNAEFyHVwivAGWaUywkqsimAMoARSiDRB5SbKLz5ZyccmebuzNSZKVD/AIt9HSIlv+g5Uu4PApIGGml0cyuZjVBwpnSjvNl5VZW19Y38puFre2d3b3i/kFTxakktEFiHst2gBXlLKINzTSn7URSLAJOW8HwauK3HqhULI5u9SihvsD9iIWMYG0k31OpQF4gsovxHe8WbafiTIGWiTsndrXs1Uq1R7veLX57vZikgkaacKxUx3US7WdYakY4HRe8VNEEkyHu046hERZU+dn06TE6MkoPhbE0E2k0VX9fZFgoNRKB2RRYD9SiNxH/9QKxkKzDcz9jUZJqGpFZcJhypGM0aQT1mKRE85EhmEhmfkdkgCUm2vRWMKW4ixUsk+ZJxT2tuDeuXb2EGfJQgjIcgwtnUIVrqEMDCNzDM7zAq/VkvVnv1sdsNWfNbw7hD6zPHwMpmrI=</latexit>P
Al

PA

PX<latexit sha1_base64="xAfGAKhKMYjyzdCP4w5VrDLnUYs=">AAACBHicbVC7TsNAEFyHVwivAGWaUywkqsimAMoARSiDRB5SbKLz5ZyccmebuzNSZKVD/AIt9HSIlv+g5Uu4PApIGGml0cyuZjVBwpnSjvNl5VZW19Y38puFre2d3b3i/kFTxakktEFiHst2gBXlLKINzTSn7URSLAJOW8HwauK3HqhULI5u9SihvsD9iIWMYG0k31OpQF4gsovxHe8WbafiTIGWiTsndrXs1Uq1R7veLX57vZikgkaacKxUx3US7WdYakY4HRe8VNEEkyHu046hERZU+dn06TE6MkoPhbE0E2k0VX9fZFgoNRKB2RRYD9SiNxH/9QKxkKzDcz9jUZJqGpFZcJhypGM0aQT1mKRE85EhmEhmfkdkgCUm2vRWMKW4ixUsk+ZJxT2tuDeuXb2EGfJQgjIcgwtnUIVrqEMDCNzDM7zAq/VkvVnv1sdsNWfNbw7hD6zPHwMpmrI=</latexit>P
Al

Approximate Propagation

Precomputation

A2Prop H(1) H(L)||

Feature Embedding Feature Transformation

σ

WX

WA

Training/Inference

MLP

Method: LD2 Framework



Method: Adjacency Embedding

• Low-Dimensional 2-hop adjacency decomposition

• Calculation:

<latexit sha1_base64="Hs5IFhNmSLRIISmF7etzbF1GDzo="></latexit>

PA · P>
A ⇡ A2

2-hop Adj Matrix
Sparse  𝑛×𝑛

Adj Embedding
Dense  𝑛×𝐹

<latexit sha1_base64="Z63YqDB1jhUTFE7ZEzsWxu0q9GY="></latexit>

PA = �
�
A2 · · ·�

�
A2N

��
Orthonormalize

Gaussian Matrix

2-hop Neighborhood



Method: Feature Embedding

• Long-Distance generalized graph propagation

CHANNEL①: Constant 2-hop 
Adjacency Propagation

CHANNEL②: Inverse 1-hop 
Laplacian Propagation

<latexit sha1_base64="XL+rD+8gl2IjLXMwsoqbAL71hkY=">AAACh3icfZDPbhMxEMadpUAb/jSlRy5WIySEqrAbUOmBSm3hwKGIIJE2Uh1Ws84ktWqvV7YXNbL8MjwNV7jxNnjTIEGKGMnST998o/F8RSWFdWn6s5XcWrt95+76Rvve/QcPNztbj06trg3HIddSm1EBFqUoceiEkziqDIIqJJ4Vl2+a/tkXNFbo8pObVzhWMCvFVHBwUco7r1mh/CDkfrR70g+0fUCZrVXu5UEWPvuTQNkxGN+YjkIU+jIwPtGuEUYh73TTXrooehOyJXTJsgb5VusFm2heKywdl2DteZZWbuzBOMElhjarLVbAL2GG5xFLUGjHfnFmoE+iMqFTbeIrHV2of054UNbOVRGdCtyFXe014j97hVrZ7Kb7Yy/KqnZY8uvF01pSp2mTIZ0Ig9zJeQTgRsS/U34BBriLSbfZW4y3GXwf93yo0IDT5plnYGYKrkK8dcZ2G/qfUZS/jZFizNlqqDfhtN/L9nrZx5fdw+Nl4OvkMdkhT0lGXpFD8o4MyJBw8pV8I9/Jj2QjeZ7sJfvX1qS1nNkmf1Vy9Auniceg</latexit>

PX,L2 =
LX

l=1

Ā2l ·X

Laplacian !𝐿 = 𝐼 − &𝐴

u0 u1 u2 u3 u4

+ +
2-hop 2-hop

y0=0 y1=1 y2=0 y3=1 y4=0

PL2
(0) PL2

(2) PL2
(4) − + − +

1-hop 1-hop 1-hop 1-hop

u0 u1 u2 u3 u4
y0=0 y1=1 y2=0 y3=1 y4=0

PH
(0) PH

(1) PH
(2) PH

(3) PH
(4)

<latexit sha1_base64="36Nd0RKCAYLakUCZ5QxHO2Oo94M="></latexit>

PX,H =
LX

l=1

(L̃+ I)l ·X



• Multi-channel embedding, one-time computation:

<latexit sha1_base64="XL+rD+8gl2IjLXMwsoqbAL71hkY="></latexit>

PX,L2 =
LX

l=1

Ā2l ·X

<latexit sha1_base64="dB0Tc5YEA9NTno8kD1Ww0BTPkjM="></latexit>

PX,H =
LX

l=1

L̃l ·X

<latexit sha1_base64="nx+yBLbFFvm7jrzD+6apQK2BIOc=">AAACM3icbVDLSsNAFJ3UV62vqks3wSLUTUmKqAhCqxsXIhXsA5paJtNJO3QmCTM3Qgn5F3/CX3CrW3FX3PoPTtoutPXAwLnn3Mu9c9yQMwWW9WFklpZXVtey67mNza3tnfzuXkMFkSS0TgIeyJaLFeXMp3VgwGkrlBQLl9OmO7xO/eYTlYoF/gOMQtoRuO8zjxEMWurmLxxXxLWkW710wgFzOPWgmErV5DEu3yYO6QWQ1o7AMCCYx3dJ4kjWH8BxN1+wStYE5iKxZ6SAZqh182OnF5BIUB8Ix0q1bSuETowlMMJpknMiRUNMhrhP25r6WFDViSd/TMwjrfRML5D6+WBO1N8TMRZKjYSrO9NT1byXiv96rpjbDN55J2Z+GAH1yXSxF3ETAjMN0OwxSQnwkSaYSKZvN8kAS0xAx5zTodjzESySRrlkn5bs+5NC5WoWTxYdoENURDY6QxV0g2qojgh6Rq/oDb0bL8anMTa+pq0ZYzazj/7A+P4BVWisNw==</latexit>

PA = �
�
A2L ·N

�
CHANNEL

Adjacency

Feature –
2-hop Constant

Feature –
1-hop Inverse

Precompute Time
𝑂(𝐿!𝑚𝐹)

Method: Embedding Precomputation

X
R(0)

P(0)
R(l)

P(l)
P

LP Hops

αT

θl reserveresidue



Table 2: Average test accuracy (%) of minibatch LD2 and baselines on heterophilous datasets. “> 12h” means
the model requires more than 12h clock time to produce proper results. Respective results of the first and second
best performances on each dataset are marked in bold and underlined fonts.

Dataset genius tolokers arxiv-year penn94 twitch-gamers pokec snap-patents wiki

Nodes n 421,858 11,758 169,343 41,536 168,114 1,632,803 2,738,035 1,770,981
Edges m 922,864 1,038,000 1,157,799 1,362,220 6,797,557 22,301,964 13,967,949 242,507,069
F / Nc 12 / 2 10 / 2 128 / 5 4,814 / 2 7 / 2 65 / 2 269 / 5 600 / 5

MLP 82.47 ±0.06 73.38 ±0.25 37.23 ±0.31 74.41 ±0.48 61.26 ±0.19 61.81 ±0.07 23.03 ±1.48 35.64 ±0.10

PPRGo 79.81 ±0.00 78.16 ±0.00 39.35 ±0.12 58.75 ±0.31 47.19 ±2.26 50.61 ±0.04 (>12h) (>12h)
SGC 79.85 ±0.01 71.16 ±0.06 43.40 ±0.16 68.31 ±0.27 57.05 ±0.21 56.58 ±0.06 37.70 ±0.06 28.12 ±0.08

GCNJK-GS 80.65 ±0.07 74.41 ±0.73 48.26 ±0.64 65.91 ±0.16 59.91 ±0.42 59.38 ±0.21 33.64 ±0.05 42.95 ±0.39

MixHop-GS 80.63 ±0.04 77.47 ±0.40 49.26 ±0.16 75.00 ±0.37 61.80 ±0.00 64.02 ±0.02 34.73 ±0.15 45.52 ±0.11

LINKX 82.51 ±0.10 77.74 ±0.13 50.44 ±0.30 78.63 ±0.25 64.15 ±0.18 68.64 ±0.65 52.69 ±0.05 50.59 ±0.12

LD2 (ours) 85.31 ±0.06 79.76 ±0.26 50.29 ±0.11 75.52 ±0.10 64.33 ±0.19 74.93 ±0.10 58.58 ±0.34 52.91 ±0.16

Table 3: Time and memory overhead of LD2 and baselines on large-scale datasets. “Learn”, “Infer”, and “Mem.”
respectively refer to minibatch learning and inference time (s) and peak GPU memory (GB). Precomputation
time is appended when applicable. “> 12h” means the model requires more than 12h clock time to produce
proper results. Respective results of the first and second best performances among heterophilous models per
metric are marked in bold and underlined fonts.

Dataset twitch-gamers pokec snap-patents wiki
Learn Infer Mem. Learn Infer Mem. Learn Infer Mem. Learn Infer Mem.

MLP 6.36 0.02 0.61 47.86 0.11 13.77 27.39 0.28 9.33 133.55 0.62 18.15
PPRGo 10.46+15.88 0.41 9.64 121.95+56.11 2.69 3.82 (>12h) (>12h)

SGC 0.09+0.74 0.01 0.28 1.05+8.08 0.01 0.28 4.94+23.54 0.01 0.42 12.66+7.98 0.01 0.52

GCNJK-GS 71.48 0.02⇤ 7.33 27.33 0.09⇤ 9.03 19.02 0.23⇤ 9.21 95.52 0.69⇤ 16.36
MixHop-GS 52.12 0.01⇤ 1.49 71.35 0.03⇤ 12.91 45.24 0.16⇤ 19.58 84.22 0.23⇤ 16.28

LINKX 10.99 0.19 2.35 28.77 0.33 9.03 39.80 0.22 21.53 180.71 1.14 14.53
LD2 (ours) 0.85+1.96 0.01 1.44 17.95+6.18 0.01 3.82 31.32+6.96 0.02 3.96 28.12+6.50 0.01 4.47

⇤ Inference time of GSAINT sampling is less precise since they are conducted on induced subgraphs smaller than the raw graph.

precomputation and training. Evaluations are conducted on a machine with 192GB RAM, two
28-core Intel Xeon CPUs (2.2GHz), and an NVIDIA RTX A5000 GPU (24GB memory).

4.2 Performance Comparison

The main evaluations of LD2 and baselines on 8 large heterophilous datasets are presented in Tables 2
and 3 for effectiveness and efficiency metrics, respectively. As an overview, our model demonstrates
its scalability in completing training and inference with fast running speed and efficient memory
utilization, especially on large graphs. At the same time, it achieves comparable or superior prediction
accuracy against the state-of-the-art minibatch heterophilous GNNs on most datasets.

Time Efficiency. We first highlight the scalability performance of our LD2 model. Specifically,
compared to heterophilous benchmarks on the four largest graphs with million-scale data, LD2

speeds up the minibatch training process by 3–15 times, with an acceptable precomputation cost. Its
inference time is also consistently below 0.1 seconds. The outstanding efficiency of LD2 is mainly
attributed to the simple model architecture that removes graph-scale operations while ensuring rapid
convergence. In contrast, the execution speeds of MixHop and LINKX are highly susceptible to node
and edge sizes, given their design dependency on the entire input graph. The extensive parameter
space also causes them to converge slower, necessitating relatively longer training times. PPRGo
shows limited scalability due to the costly post-transformation propagation. The superiority of LD2

efficiency even holds when compared to simple methods such as MLP and SGC, indicating that the
model is favorable for incorporating extra heterophilous information with no significant additional
overhead. The empirical results affirm that LD2 exhibits optimized training and inference complexity
at the same level as simple models.
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Evaluation: Effectiveness

• Top 1 accuracy on 6/8 large-scale heterophilous datasets

• No accuracy drop for minibatch



Evaluation: Efficiency

• 3-15× faster minibatch training, significantly fast inference

• Up to 5× lower GPU memory for large graphs

Table 2: Average test accuracy (%) of minibatch LD2 and baselines on heterophilous datasets. “> 12h” means
the model requires more than 12h clock time to produce proper results. Respective results of the first and second
best performances on each dataset are marked in bold and underlined fonts.

Dataset genius tolokers arxiv-year penn94 twitch-gamers pokec snap-patents wiki

Nodes n 421,858 11,758 169,343 41,536 168,114 1,632,803 2,738,035 1,770,981
Edges m 922,864 1,038,000 1,157,799 1,362,220 6,797,557 22,301,964 13,967,949 242,507,069
F / Nc 12 / 2 10 / 2 128 / 5 4,814 / 2 7 / 2 65 / 2 269 / 5 600 / 5

MLP 82.47 ±0.06 73.38 ±0.25 37.23 ±0.31 74.41 ±0.48 61.26 ±0.19 61.81 ±0.07 23.03 ±1.48 35.64 ±0.10

PPRGo 79.81 ±0.00 78.16 ±0.00 39.35 ±0.12 58.75 ±0.31 47.19 ±2.26 50.61 ±0.04 (>12h) (>12h)
SGC 79.85 ±0.01 71.16 ±0.06 43.40 ±0.16 68.31 ±0.27 57.05 ±0.21 56.58 ±0.06 37.70 ±0.06 28.12 ±0.08

GCNJK-GS 80.65 ±0.07 74.41 ±0.73 48.26 ±0.64 65.91 ±0.16 59.91 ±0.42 59.38 ±0.21 33.64 ±0.05 42.95 ±0.39

MixHop-GS 80.63 ±0.04 77.47 ±0.40 49.26 ±0.16 75.00 ±0.37 61.80 ±0.00 64.02 ±0.02 34.73 ±0.15 45.52 ±0.11

LINKX 82.51 ±0.10 77.74 ±0.13 50.44 ±0.30 78.63 ±0.25 64.15 ±0.18 68.64 ±0.65 52.69 ±0.05 50.59 ±0.12

LD2 (ours) 85.31 ±0.06 79.76 ±0.26 50.29 ±0.11 75.52 ±0.10 64.33 ±0.19 74.93 ±0.10 58.58 ±0.34 52.91 ±0.16

Table 3: Time and memory overhead of LD2 and baselines on large-scale datasets. “Learn”, “Infer”, and “Mem.”
respectively refer to minibatch learning and inference time (s) and peak GPU memory (GB). Precomputation
time is appended when applicable. “> 12h” means the model requires more than 12h clock time to produce
proper results. Respective results of the first and second best performances among heterophilous models per
metric are marked in bold and underlined fonts.

Dataset twitch-gamers pokec snap-patents wiki
Learn Infer Mem. Learn Infer Mem. Learn Infer Mem. Learn Infer Mem.

MLP 6.36 0.02 0.61 47.86 0.11 13.77 27.39 0.28 9.33 133.55 0.62 18.15
PPRGo 10.46+15.88 0.41 9.64 121.95+56.11 2.69 3.82 (>12h) (>12h)

SGC 0.09+0.74 0.01 0.28 1.05+8.08 0.01 0.28 4.94+23.54 0.01 0.42 12.66+7.98 0.01 0.52

GCNJK-GS 71.48 0.02⇤ 7.33 27.33 0.09⇤ 9.03 19.02 0.23⇤ 9.21 95.52 0.69⇤ 16.36
MixHop-GS 52.12 0.01⇤ 1.49 71.35 0.03⇤ 12.91 45.24 0.16⇤ 19.58 84.22 0.23⇤ 16.28

LINKX 10.99 0.19 2.35 28.77 0.33 9.03 39.80 0.22 21.53 180.71 1.14 14.53
LD2 (ours) 0.85+1.96 0.01 1.44 17.95+6.18 0.01 3.82 31.32+6.96 0.02 3.96 28.12+6.50 0.01 4.47

⇤ Inference time of GSAINT sampling is less precise since they are conducted on induced subgraphs smaller than the raw graph.

precomputation and training. Evaluations are conducted on a machine with 192GB RAM, two
28-core Intel Xeon CPUs (2.2GHz), and an NVIDIA RTX A5000 GPU (24GB memory).

4.2 Performance Comparison

The main evaluations of LD2 and baselines on 8 large heterophilous datasets are presented in Tables 2
and 3 for effectiveness and efficiency metrics, respectively. As an overview, our model demonstrates
its scalability in completing training and inference with fast running speed and efficient memory
utilization, especially on large graphs. At the same time, it achieves comparable or superior prediction
accuracy against the state-of-the-art minibatch heterophilous GNNs on most datasets.

Time Efficiency. We first highlight the scalability performance of our LD2 model. Specifically,
compared to heterophilous benchmarks on the four largest graphs with million-scale data, LD2

speeds up the minibatch training process by 3–15 times, with an acceptable precomputation cost. Its
inference time is also consistently below 0.1 seconds. The outstanding efficiency of LD2 is mainly
attributed to the simple model architecture that removes graph-scale operations while ensuring rapid
convergence. In contrast, the execution speeds of MixHop and LINKX are highly susceptible to node
and edge sizes, given their design dependency on the entire input graph. The extensive parameter
space also causes them to converge slower, necessitating relatively longer training times. PPRGo
shows limited scalability due to the costly post-transformation propagation. The superiority of LD2

efficiency even holds when compared to simple methods such as MLP and SGC, indicating that the
model is favorable for incorporating extra heterophilous information with no significant additional
overhead. The empirical results affirm that LD2 exhibits optimized training and inference complexity
at the same level as simple models.
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• Higher propagation hops are important for distant information

• Combination of channels is effective for different graphs
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• LD2 Framework: Pre-Propagation Decoupled Heterophilous GNN, 
optimized minibatch training

• Low Dimension Adjacency Embedding: embed full graph 
topology in low dimensional matrix representation

• Long Distance Feature Embeddings: multi-channel node features 
by different graph propagation schemes

• Performance Improvement: 3–15× faster minibatch training and 
inference, up to 5× smaller memory footprint

Summary



Benchmarking Spectral Graph Neural Networks: 
A Comprehensive Study on Effectiveness and Efficiency

Following work …

• Unified framework for over 30 
spectral GNN filters

• Scalable pipeline for training on 
million-scale graphs

• Observation and guideline on 
homophilous & heterophilous data

arXiv: 2406.09675 GitHub: gdmnl/Spectral-GNN-Benchmark
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